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A Additional Implementation Details
We pretrain MotionMAE on Something-Something V2, Kinetics-400 and UCF101 using
the hyper-parameters as summarized in Table 1(a). The dataset specific hyper-parameters
are given in the individual columns, with the others shared across datasets. These settings
apply to ViT-B and ViT-L, unless specified otherwise. We use the same hyper-parameters
for pretraining. Table 1(b) summarizes our fine-tuning settings.

We conduct the experiments with 32 A100 GPUs for both pretraining and finetuning on
Something-Something V2 and Kinetics-400 datasets. The experiments on smaller UCF101
are trained on 8 V100 GPUs.

B Additional Experimental Results

UCF101 Except large action datasets as above, we further evaluate on the small UCF101
dataset. As dataset size is a critical dimension in self-supervised learning. As shown in Ta-
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Method Pretrain data Architecture Frames Top-1 (%) Param(M)
OPN UCF101 VGG N/A 59.6 N/A
VCOP UCF101 R(2+1)D N/A 72.4 N/A
CoCLR UCF101 S3D-G 32 81.4 9
VideoMAE UCF101 ViT-B 16 90.8 87
MotionMAE-Sha UCF101 ViT-B 16 94.0 87
SpeedNet K400 S3D-G 64 81.1 9
Pace K400 R(2+1)D 16 77.1 16
RSPNet K400 S3D-G 64 93.7 9
ASCNet K400 S3D-G 64 90.8 9
MMV AS+HTM S3D-G 32 92.5 9
XDC IG65M R(2+1)D 32 94.2 15
GDT IG65M R(2+1)D 32 95.2 15
VideoMAE K400 ViT-B 16 96.1 87
MotionMAE-Sha K400 ViT-B 16 96.3 87

Table 1: Comparison with the state-of-the-art methods on UCF101. Due to varying dataset
sizes, we pretrain MotionMAE by 2400 epochs on UCF101 and by 1600 epochs on Kinetics-
400 (K400). AS: Audio-Set [5]; HTM: HowTo100M [9]; IG65M: Instagram-65M [6]. N/A:
Not Available. Grayed: Multimodal methods. Sha: Decoder with Sharing design.

ble 1, it is encouraging that our MotionMAE can surpass all the alternative methods in both
domain-specific and domain-generic settings. For instance, when pretrained on Kinetics-400
(K400), our method reaches the best ever classification accuracy of 96.3%, higher than the
prior art self-suerpvised learning method VideoMAE [11] and multimodal learning method
GDT [10] (despite using much more videos from IG65M, more video frames, and extra au-
dio modality). This highlights the crucial significance of motion information which, once
learned properly as in our proposed pretraining method, would demonstrate stronger repre-
sentational power than other techniques (e.g., multimodal alignment). Another highlight is
that in the domain-specific setting characterized by much lower training cost in this context,
our MotionMAE achieving the top-1 accuracy of 94.0% ,which is favored over the most
similar competitor VideoMAE by as large as 3.2%. These observations further verify the
advantages of our method over prior alternatives.

Temporal Difference vs Optical Flow We investigate the effect of motion target by con-
trasting temporal difference (TD) with expensive-to-obtain optical flow (OF). We pre-extracted
per-frame optical flow before pre-training. We use ViT-S as the backbone, pre-training for
400 epochs using MotionMAE-Sha, and finetuning for 50 epochs. Table 4 shows that both
targets give very similar results. Thus TD is a more cost-effective choice.

Improvement vs Training Cost We also analyze the model accuracy and training time in
GPU hours on Kinetics-400 and UCF101. For fair comparisons with prior art, we measure
the latency under the same hardware setting consisting of 8 NVIDIA V100 GPUs. For
Kinetics-400, we use pretraining (400 ∼ 1600 epochs) and finetuning setting (50 epochs
without repeat augmentation). For UCF101, we use pretraining (1600 ∼ 3200 epochs) and
finetuning setting (100 epochs without repeat augmentation). We test both variants (Sha
and Ind) of MotionMAE. From Table 2(a) and Table 2(b), we observe that the findings
of experiments are consistent with Something-something V2. In particular, MotionMAE
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(a) Pretraining

config Something-Something
V2

Kinetics400 UCF101

optimizer AdamW [8]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1,β2=0.9,0.95 [3]
learning rate schedule cosine decay [7]
warmup epochs 40
epochs 2400 1600 3200
flip augmentation no yes yes
batch size 1024(B)512(L) 1024(B)512(L) 128(B)
augmentation MultiScaleCrop
patch norm no yes yes
masking ratio 90% 90% 75%
masking type random tube random

(b) Finetuning

config Something-Something
V2

Kinetics400 UCF101

optimizer AdamW [8]
base learning rate 5e-4 5e-4(B)2e-3(L) 1e-3
weight decay 0.05
optimizer momentum β1,β2=0.9,0.999
layer-wise lr decay 0.75 [2]
learning rate schedule cosine decay [7]
warmup epochs 5
repeated sampling 2 2 1
epochs 30(B)20(L) 75(B)35(L) 100(B)
flip augmentation no yes yes
batch size 512(B)256(L) 384(B)64(L) 256(B)
RandAug (9, 0.5) [4]
label smoothing 0.1 [1]
mixup 0.8 [13]
cutmix 1.0 [12]
drop path 0.1(B),0.2(L)

Table 2: Settings for model pretraining and finetuning. Note: lr = base_lr×batchsize / 256
per the linear lr scaling rule.
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(a) Kinetics-400.

400 800 1600Method Gain Top-1 Time Gain Top-1 Time Gain Top-1 Time
VideoMAE - 79.4 782.2 - 80.0 1564.4 - 80.5 3128.9

MotionMAE-Sha +0.6 80.0 782.2 +0.4 80.4 1564.4 +0.2 80.7 3128.9
MotionMAE-Ind +0.8 80.2 854.2 +0.3 80.3 1708.4 +0.4 80.9 3416.9

(b) UCF101.

1600 2400 3200Method Gain Top-1 Time Gain Top-1 Time Gain Top-1 Time
VideoMAE - 90.4 117.3 - 90.6 234.6 - 90.8 469.3

MotionMAE-Sha +1.3 92.7 117.3 +3.0 93.6 234.6 +3.2 94.0 469.3
MotionMAE-Ind +1.6 93.0 149.3 +2.8 93.4 298.6 +3.2 94.0 597.3

Table 3: Comparisons with the efficiency and effectiveness on Kinetics-400 and UCF101.
We report the Gain, Top-1 Accuracy (%) and Training time. The Training time of pretraining
is GPU hours.

Target top-1 (%) pre-process (days)
Frame 63.5 0
Frame + OF 64.3 2
Frame + TD 64.4 0

Table 4: Motion estimation: Temporal difference (TD) vs optical flow (OF) on Something-
Something V2.

Masking strategy top-1 (%)
time-only 76.2
random 79.8

space-only 80.0
Table 5: Effect of different masking strategies on Kinetics-400.
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Figure 1: More visualizations on Kinetics-400 and UCF101. For each dataset, the first row
shows the original video clip, and two masking ratios are visualized: 90% (solid box) and
95% (dashed box). Best viewed with zooming-in.

boosts more in the early epochs.

Mask sampling strategy We evaluate three masking strategies (random, time-only, space-
only) on Kinetics400. As shown in Table 5, we find that random and space-only are similarly
performing, whilst time-only is the worst. This is not surprising since reconstructing the
whole frames could be over challenging.

C Additional Visualization Examples
Figure 1 and 2 provide more examples of reconstruction on Something-something V2,
UCF101 and Kinetics-400.
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Figure 2: More visualizations on Something-something V2. The first row shows the original
video clip, and two masking ratios are visualized: 90% (solid box) and 95% (dashed box).
Best viewed with zooming-in.
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