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Derivation of the conditional vector field
Theorem 3 from Lipman et al. [3] shows that a conditional vector field defining a Gaussian
probability path pt(zzzt | zzz1) =N (zzzt | µµµ1(t),σ

2(t)III) can be defined as

uuut(zzzt | zzz1) =
σ ′(t)
σ(t)

(zzzt −µµµ1(t))+µµµ
′
1(t), (1)

where µµµ1(t) and σ(t) indicate that the mean and covariance of the probability path change
over time. Our aim is to construct valid probability paths that lead to the standard base
distribution, or a class-specific component in a GMM base distribution. Lipman et al. [3]
already construct such a path for the standard base distribution. By defining µµµ1(t) = tzzz1 and
σ(t) = 1− (1−σmin)t we have

µµµ
′
1(t) = zzz1 and σ

′(t) = σmin −1, (2)

which lead to the following conditional vector field:

uuut(zzzt | zzz1) =
σmin −1

1− (1−σmin)t
(zzzt − tzzz1)+ zzz1 (3)

=
zzz1 − (1−σmin)zzzt

1− (1−σmin)t
. (4)

To construct a valid probability path that leads to a class-specific component in the GMM
base, we leave σ(t) unchanged and define µµµ(t) as a linear interpolation between the data
point zzz1 and its class-specific mean µµµk as follows:

µµµ1(t) = tzzz1 +(1− t)µµµk and σ(t) = σmin −1. (5)

In order to apply Theorem 3 from Lipman et al. [3], we first have

µµµ
′
1(t) = zzz1 −µµµk and σ

′(t) = σmin −1, (6)
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which we substitute into the definition for the conditional vector field:

uuut(zzzt | zzz1) =
σmin −1

1− (1−σmin)t
(zzzt − tzzz1 − (1− t)µµµk)+ zzz1 −µµµk (7)

=
zzz1 −σminµµµk − (1−σmin)zzzt

1− (1−σmin)t
. (8)

This vector field corresponds to probability paths between a density concentrated around the
data zzz1 and the GMM component corresponding to zzz1’s assigned class, with mean µµµk.

Implementation details
For the CFM models, we adapt the implementation from Tong et al. [5], with hyperparam-
eter tuning on the batch size and learning rate, for both the standard and GMM bases, and
additionally the covariance scale for the GMM base. Tables 1 and 2 show final hyperpa-
rameter values used. We refer the reader to the original implementation [5] for descriptions
of the various hyperparameters. Log-likelihoods and generated samples are computed us-
ing the torchdiffeq [1] framework. All models are trained on a single NVIDIA RTX A6000
GPU. The Adam optimiser [2] is used with default PyTorch [4] values for β1 and β2, and its
learning rate is warmed up with a linear learning rate scheduler.

Table 1: Hyperparameters for CFM models trained with the standard base.

Parameter MNIST FashionMNIST CIFAR10 SVHN

Channels 128 128 128 128
Channels multiple (1, 2, 2) (1, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2)
Heads 1 1 1 1
Heads channels 1 1 1 1
Attention resolution 16 16 16 16
Dropout 0.0 0.0 0.0 0.0
Batch size 128 256 256 256
Epochs 150 150 150 150
Learning rate (warmed up) 0.0002 0.0002 0.0002 0.0002

Table 2: Hyperparameters for CFM models trained with the GMM base.

Parameter MNIST FashionMNIST CIFAR10 SVHN

Covariance scale 0.6 0.6 0.8 0.8
Channels 128 128 128 128
Channels multiple (1, 2, 2) (1, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2)
Heads 1 1 1 1
Heads channels 1 1 1 1
Attention resolution 16 16 16 16
Dropout 0.0 0.0 0.0 0.0
Batch size 256 128 256 256
Epochs 150 150 150 150
Learning rate (warmed up) 0.0002 0.0002 0.0002 0.0002
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