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Introduction

Background. Continuous normalising flows specify a target distribution px(x) in terms of an
easy-to-sample-from base distribution pu(u), an invertible transformation given by the solu-
tion to a neural ordinary differential equation:

dz(t)

dt
= fθ(zt, t), t ∈ [t1, t0], z1 = z(t1) = x, z0 = z(t0) = u, (1)

and the instantaneous change of variables formula [1]:

∂

∂t
log p(z) = −Tr

(
∂f

∂z

)
. (2)

We show that continuous normalising flows, trained through the conditional flow matching
objective (CFM models), provide unreliably high likelihoods on out-of-distribution data (Fig-
ure 1).
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Figure 1: Out-of-distribution samples from SVHN are assigned higher likelihoods (p(z1)) compared to in-
distribution samples from CIFAR10. We see these undesirably high likelihoods also under the model’s unimodal
base distribution (p(z0)), prompting our investigation into multimodal base distributions.

Research question. We investigate whether a multimodal Gaussian mixture model (GMM)
base distribution can lead to more reliable out-of-distribution likelihoods. As motivation, we
show in Figure 2 that a CFM model might easily transform out-of-distribution data points be-
tween separate modes in the target space to a region of high-likelihood under a unimodal base
distribution. With a class-informed multimodal base distribution, we hope that the model can
assign appropriately low likelihood to out-of-distribution data.
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Figure 2: For CFM models trained on a 2D “moons” dataset (left), we see an out-of-distribution test point (black
dot) being transformed to a point with high likelihood under the standard unimodal base distribution (middle),
and low likelihood under a multimodal base distribution (right).

Contributions. The GMM base enables sampling from the target distribution in a class-
specific manner, performs comparable to a standard (unimodal) Gaussian base, but may not
be sufficient to solve the problem of high likelihoods for out-of-distribution data. We also find
that CFM models may depend too strongly on pixel values, rather than semantic content.

Methodology

Given a class-labelled training set D = {(xi, yi)}Ni=1 with xi ∈ Rd, and letting z1 = xi, we con-
struct a continuous flow that computes the log-likelihood of a test sample by simultaneously
solving Equations 1 and 2 for t ∈ [t1, t0]. The flow models are trained through the conditional
flow matching objective [2]

L(θ) = 1

N

N∑
i=1

||fθ(zt, t)− ut(zt | z1)||2, (3)

with Gaussian probability paths defined over t ∼ U(0, 1). The dynamics function fθ(zt, t) is
implemented as a U-Net with attention.

Standard base distribution. A standard base can be implemented through the following tar-
get conditional vector field, with σmin sufficiently small:

ut (zt | z1) =
z1 − (1− σmin)zt
1− (1− σmin)t

. (4)

GMM base distribution. To incorporate multimodality and class information, we consider
a GMM base distribution with a component for each of the K classes in the data:

pu(z0) =

K∑
k=1

ckN (z1 | µk,Σk) , (5)

with µk set to the empirical mean of each class represented in the training set, Σk = σ2I , and
ck the relative class frequencies. This GMM base can be implemented through the following
target conditional vector field:

ut (zt | z1) =
z1 − σminµk − (1− σmin)zt

1− (1− σmin)t
. (6)

Log likelihoods

Bits-per-dimension scores in Table 1 shows that the GMM base distribution performs compa-
rably on in-distribution data, but does not alleviate the problem of unreliable likelihoods. We
show through a shuffling experiment in Figure 3 that CFM models may depend too strongly
on pixel values.
Table 1: Bits-per-dimension scores for CFM models trained on various datasets, for in- and out-of-distribution
test sets, when using the standard (unimodal) and GMM base distributions. A lower bpd implies a higher likeli-
hood on the data under the model.

CFMs trained on MNIST

Standard GMM
MNIST-Test 1.15 ± 0.01 1.73 ± 0.04
FashionMNIST-Test 4.68 ± 0.02 5.13 ± 0.15

CFMs trained on FashionMNIST

Standard GMM
FashionMNIST-Test 2.87 ± 0.01 3.39 ± 0.06
MNIST-Test 1.75 ± 0.02 2.29 ± 0.06

CFMs trained on CIFAR10

Standard GMM
CIFAR10-Test 3.42 ± 0.01 3.50 ± 0.01
SVHN-Test 2.32 ± 0.01 2.41 ± 0.01

CFMs trained on SVHN

Standard GMM
SVHN-Test 2.11 ± 0.00 2.20 ± 0.01
CIFAR10-Test 3.83 ± 0.01 3.94 ± 0.01
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Figure 3: In-distribution test images are randomly shuffled, as illustrated in (a), leading to the histograms of log-
likelihoods shown in (b) under models that use the standard (left) and GMM (right) base distributions. Test log
likelihood histograms are less affected than FID scores for out-of-distribution patch-shuffled datasets, indicating
an over-reliance on pixel values.

Sample quality

Table 2 shows FID scores for generated samples. Across all the datasets, models using the
standard base produce samples of higher quality compared to the GMM base (with a large
outlier for the SVHN model that uses the standard base). The high FID for the GMM can be
attributed to mode-collapse, and is surprising given the class-specific parameterisation of the
base distribution. Figure 4 shows a few generated samples from the various models.
Table 2: Fréchet inception distances (FID) of generated samples from CFM models trained with the standard and
GMM base distributions. Lower is better. We include in the last column results from models that use a GMM
base with larger covariance scaling, leading to a base distribution that is approximately unimodal.

Dataset Standard GMM GMM (σ2 = 1)

MNIST 03.20 ± 01.25 20.18 ± 07.31 02.00
FashionMNIST 05.37 ± 00.83 57.04 ± 06.64 07.50
CIFAR10 27.62 ± 01.78 64.85 ± 12.52 29.66
SVHN 33.10 ± 39.85 62.20 ± 21.54 50.06
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Figure 4: Real and generated samples from the best performing CFM models (according to FID scores over 50K
samples) with the standard and GMM base distributions.

Future work

Future work could include training CFM models in a feature space with semantic consistency,
to circumvent their dependence on pixel frequencies. It may also be possible to learn the GMM
parameters, to mitigate the observed mode-collapse in generated samples.
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