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Abstract

Normalising flows are a flexible class of generative models that provide exact like-
lihoods, and are often trained through maximum likelihood estimation. Recent work
suggests that these models can assign undesirably high likelihood to out-of-distribution
data, questioning their reliability for applications where likelihoods are important (e.g.
outlier detection). We show that continuous normalising flows trained with the condi-
tional flow matching objective, instead of maximum likelihood, also provide unreliable
likelihoods. We then argue for and investigate the utility of incorporating multimodality
in the base distribution, through a Gaussian mixture model (GMM) centred at the empir-
ical means of a target distribution’s modes. The GMM has an additional benefit in that
samples can be generated from specified modes. We find that the GMM base distribution
leads to performance comparable to a standard (unimodal) base distribution for in- and
out-of-distribution likelihoods, at little to no extra cost in training and inference times.
Interestingly, samples generated by models that use a GMM base have higher precision
but significantly lower recall compared to the standard base. We also find support for
the hypothesis that continuous flows depend too strongly on pixel values, rather than
semantic content.

1 Introduction
Normalising flows are generative models that specify a target density through a base dis-
tribution and an invertible transformation process, and have been successfully applied for
image [7, 14, 19] and video [17] generation, computer graphics [22] and sensor noise mod-
elling [1]. They offer exact likelihood evaluation as an advantage over other generative
models, enabling, in principle, the ability for outlier detection. We are specifically interested
in the reported phenomenon of normalising flows assigning undesirably high likelihoods to
out-of-distribution data [15, 24, 32], which questions their reliability in applications.

A discrete-step normalising flow specifies a target distribution px(xxx) in terms of an
easy-to-sample-from base distribution pu(uuu), and an invertible transformation uuu = g(xxx) with
uuu ∼ pu(uuu), by employing the change-of-variables formula. g(xxx) is defined as a compos-
ite function, usually chosen to be a neural network whose architecture is restricted for a
tractable log-determinant in the change-of-variables formula. The continuous-time vari-
ant [4, 9] (hereafter referred to as a continuous flow) expresses uuu = g(xxx) as the solution
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to an initial value problem (IVP):

dzzz(t)
dt

= fθθθ (zzzt , t), t ∈ [t1, t0], zzz0 = zzz(t0) = uuu, zzz1 = zzz(t1) = xxx, (1)

and uses a continuous analog of the change of variables formula to determine log px(zzz1) [4].
The function fθθθ (zzzt , t) defines a time-dependent vector field describing the transformation
dynamics, with trainable parameters θθθ . This formulation circumvents restrictions on g(xxx)
for a tractable log-determinant, at the time-cost of simulating solution trajectories for the IVP
in Equation 1. For a chosen base distribution and transformation function, the flow is trained
by maximum likelihood. It is sufficient for the base distribution pu(zzz0) to be a standard
unimodal Gaussian [4, 6, 7, 8, 9, 14, 16, 26, 32], however, when trained with the maximum
likelihood objective, these models can provide unreliable likelihoods for out-of-distribution
data [15, 24, 32]. For instance, a model trained on CIFAR10 may provide higher likelihoods
for samples from SVHN (similar to what we show in Figure 1).

Continuous flows trained with the recently introduced conditional flow matching [19] ob-
jective (CFM models) circumvent maximum likelihood training and the need for simulating
solution trajectories. With the bottleneck of simulation removed, continuous flows become
more relevant to applications at scale. We show for the first time that CFM models also pro-
vide unreliable out-of-distribution likelihoods; an undesirable phenomenon in view of the
benefit that flows provide in terms of exact likelihood evaluation. Then, motivated by the
considerable overlap in the base distribution likelihoods for both in- and out-of-distribution
data, as seen in Figure 1 for example, we investigate whether a multimodal base distribution
can lead to more reliable out-of-distribution likelihoods. As further illustration, we show in
Figure 2 that a CFM model might easily transform out-of-distribution data points between
separate modes in the target space to a region of high-likelihood under a unimodal base dis-
tribution. With a class-informed multimodal base distribution, we hope that the model can
assign appropriately low likelihood to out-of-distribution data.

We incorporate multimodality through a Gaussian mixture model (GMM), with com-
ponent means centred at the empirical means of the target distribution’s modes. Our work
complements existing approaches by reporting both in- and out-of-distribution likelihoods
on common image datasets, with a view towards understanding the out-of-distribution fail-
ure modes of CFM models. We also include sample quality and diversity metrics to evaluate
whether multimodality in the base distribution is beneficial for data generation.

5000 10000 15000
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cifar10 svhn

log p(zzz1)
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Figure 1: Decomposed log-likelihood histograms for data under a continuous-time flow
model trained on the CIFAR10 dataset, with log p(zzz1) = log p(zzz0)−

∫ t0
t1 Tr(∂ f/∂ zzzt) dt. Out-

of-distribution samples from the SVHN dataset are assigned higher likelihoods (p(zzz1)) com-
pared to in-distribution samples. We see these undesirably high likelihoods also under the
model’s standard base distribution (p(zzz0)), prompting our investigation into an alternative.
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target data unimodal base multimodal base

Figure 2: For CFM models trained on a 2D “moons” dataset (left), we see an out-of-
distribution test point (black dot) being transformed to a point with high likelihood under
the standard unimodal base distribution (middle), and low likelihood under a multimodal
base distribution (right). Orange and blue indicate the two classes in this dataset.

Even though a GMM base enables sampling from the target distribution in a class-
specific manner, our results suggest that it may not be sufficient to solve the problem of
high likelihoods for out-of-distribution data, and indeed performs comparable to a standard
(unimodal) Gaussian base. We also find that CFM models may depend too strongly on pixel
values, rather than semantic content, suggesting interesting avenues for future work.

2 Related work
That normalising flows provide unreliable likelihoods for out-of-distribution samples has
been noted before. The seminal work of Nalisnick et al. [24] showed that discrete-step flows
such as Glow [14] and RealNVP [7] assign higher likelihoods to out-of-distribution data,
according to the bits-per-dimension metric. Kirichenko et al. [15] further investigated this
behaviour, specifically for RealNVP [7], and found that the inductive biases of the flow can
influence out-of-distribution likelihoods. The same phenomenon has been observed for con-
tinuous flows [12, 32]. These models are all trained through maximum likelihood, making it
hard to determine whether the training objective is the cause of unreliable likelihoods. Our
work complements the literature on out-of-distribution likelihoods by showing that CFM
models (trained with the flow matching objective rather than through maximum likelihood)
exhibit similar behaviour. It is worth highlighting the importance of this observation, given
that CFM models are more scalable than simulation-based continuous flows. Our results also
suggest that maximum likelihood training might not be the cause of unreliable likelihoods.

We depart from the recent literature on conditional flow matching by focusing on the
base distribution, instead of the probability path parameterisation [2, 20, 27, 31]. As far
as we know, this is the first work that considers multimodality in the base distribution for
CFM models. Our work adapts the Gaussian probability paths introduced by Lipman et al.
[19] to incorporate multimodality in the form of a GMM, with a view towards understanding
the failure modes of out-of-distribution likelihoods for continuous flows. GMMs have been
used for discrete-step flows for the task of density estimation and semi-supervised image
classification [15, 25, 29], and have yielded improvements for those tasks. It is also common
to use class labels to improve image synthesis in other generative models, like generative
adversarial networks (GANs) and diffusion models. For GANs, label information can be
included via a projection in the discriminator [21] or self-attention in the generator [33]. For
diffusion models, it can be included via adaptive group normalisation, or through other class
conditional processes [5].
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3 Methodology
Given a class-labelled training set D = {(xxxi,yi)}N

i=1 with xxxi ∈ Rd , and letting zzz1 = xxxi, we
construct a continuous flow that computes the log-likelihood as

log p(zzz1) = log p(zzz0)−
∫ t0

t1
Tr

[
∂ f
∂ zzzt

]
dt. (2)

Following Grathwohl et al. [9], the transformed sample uuu = zzz0 and log p(zzz1) are obtained by
simultaneously solving Equations 1 and 2 for t ∈ [t1, t0]. Hutchinson’s trace approximation
is applied to the Jacobian term for computational efficiency. Equation 2 describes how prob-
ability paths pt(zzzt) between the target and base densities evolve over time. We restrict our
focus to Gaussian conditional probability paths,

pt(zzzt | zzz1) =N (zzzt | µµµ1(t),σ
2(t)III), (3)

where µµµ1(t) and σ2(t) describe how the mean and covariance change over time, with µµµ1
parameterised by zzz1. Such a probability path follows trajectories between a density concen-
trated around zzz1 and the base density, and is specified by a conditional vector field (Lipman
et al. [19], Theorem 3):

uuut(zzzt | zzz1) =
σ ′(t)
σ(t)

(zzzt −µµµ1(t))+µµµ
′
1(t), (4)

where the prime symbol indicates the derivative with respect to t. The conditional flow
matching [19] objective is then defined as

L(θθθ) = 1
N

N

∑
i=1

|| fθθθ (zzzt , t)−uuut(zzzt | zzz1)||2, (5)

with probability paths defined over t ∼ U(0,1). The dynamics function fθθθ (zzzt , t) is imple-
mented as a U-Net with attention [11, 19]. The target conditional vector field must be set
so that there is a valid probability path between the data distribution p1(zzz1) and the base
distribution p0(zzz0).

Standard base distribution. As a baseline, we consider the standard unimodal Gaussian
base distribution. For the Gaussian probability paths in Equation 3, a standard base can be
constructed by defining µµµ1(t) = tzzz1 and σ(t) = 1− (1−σmin)t, leading to the following
target conditional vector field:

uuut (zzzt | zzz1) =
zzz1 − (1−σmin)zzzt

1− (1−σmin)t
. (6)

GMM base distribution. To incorporate multimodality and class information, we consider
a GMM base distribution with a component for each of the K classes in the data:

pu(zzz0) =
K

∑
k=1

ck N (zzz1 |µµµk,ΣΣΣk) , (7)

with µµµk set to the empirical mean of each class represented in the training set, ΣΣΣk = σ2III,
and ck the relative class frequencies. Probability paths that lead to a component mean in the
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GMM can be constructed by defining µµµ1(t) = tzzz1 +(1− t)µµµk and σ(t) = 1− (1−σmin)t,
with µµµk referring to the class mean of sample zzz1. This leads to the following target condi-
tional vector field (we provide a derivation in the supplementary material):

uuut (zzzt | zzz1) =
zzz1 −σminµµµk − (1−σmin)zzzt

1− (1−σmin)t
. (8)

Equation 8 defines a probability path between a density centred at the data point zzz1, and a
Gaussian centred at the empirical mean of the class associated with zzz1. σmin is set suffi-
ciently small so that the density is concentrated around a sample. In practice, samples are
obtained from the GMM component corresponding to each class in a batch during training.
At test time, the likelihood of a sample is evaluated and weighed across all components, as
in Equation 7. We use the log-sum-exp trick for numerical stability.

Datasets. We consider the MNIST, FashionMNIST, CIFAR10, and SVHN datasets, for
which it has been shown that flow models provide unreliable likelihoods [24]. Refer to
Figure 5 (top row) for samples from each dataset.

Likelihood metric. Bits-per-dimension (bpd) is used to evaluate in- and out-of-distri-
bution likelihoods, computed as

bpd =− log2 p(xxx)
d

=− log p(xxx)
d log(2)

, (9)

where d is the dimension of the data and log p(xxx) is averaged over a test set. This metric
gives an indication of the number of bits required, on average, to encode the data under the
model [23]. A higher bpd implies a lower average likelihood under the model. Histograms
of per-sample log-likelihoods over the test set will also be considered, as in Figure 1.

Sample quality. The Fréchet inception distance (FID) [10] is used as a measure of sample
quality and diversity, computed between the training set and 50K generated samples, in
accordance with common practice [3, 13, 18]. A lower FID implies better sample quality,
but a high FID can mean either that the model is not able to generate high quality samples,
or that it captures only a subset of the data modes [23]. Therefore we also consider precision
and recall, as proposed by Kynkäänniemi et al. [18]: precision measures whether generated
samples are as close (or closer) in feature space to the training samples as training samples
are to one another, and recall measures whether training samples are as close (or closer) in
feature space to generated samples as generated samples are to one another.

Quantitative metrics are calculated over multiple runs, with models trained over 150
epochs. We use hyperparameters from Lipman et al. [19] as a starting point, reduce the
capacity of the models slightly due to compute constraints, and perform hyperparameter tun-
ing on the learning rate and batch size for both base distributions. In addition, we perform
hyperparameter tuning on the GMM covariance scale σ2, restricting it to values between
0.5 and 0.8. We observed that decreasing the covariance for the GMM too much can lead
to poorer samples, and σ2 ≥ 1 leads to a GMM base that is approximately the unimodal
standard base for data scaled in the interval (0,1). Code to reproduce our results is available
at this https URL.
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4 Results
Table 1 shows bits-per-dimension scores for separate models trained on the four datasets.
Our results reproduce for CFM models what has been observed for discrete flows [15, 24]
and continuous flows trained through maximum likelihood [32]. CFM models with standard
and GMM base distributions trained on FashionMNIST, assign higher likelihoods (lower
bpd) to MNIST data, and models trained on CIFAR10 assign higher likelihoods to SVHN
data. The fact that these models are trained with a flow matching objective suggests that
maximum likelihood training might not be the cause of unreliable likelihoods reported pre-
viously [32]. We further observe that CFM models trained on MNIST or SVHN provide
reliable likelihoods, again corroborating what has been shown for discrete [15, 24] and con-
tinuous flows trained through maximum likelihood [32].

Table 1: Bits-per-dimension scores for conditional flow matching (CFM) models trained on
various datasets, for in- and out-of-distribution test sets, when using the standard (unimodal)
and GMM base distributions. A lower bpd implies a higher likelihood on the data under the
model. Means and standard deviations are measured over multiple training runs.

CFMs trained on MNIST

Standard GMM
MNIST-Test 1.15 ± 0.01 1.73 ± 0.04
FashionMNIST-Test 4.68 ± 0.02 5.13 ± 0.15

CFMs trained on FashionMNIST

Standard GMM
FashionMNIST-Test 2.87 ± 0.01 3.39 ± 0.06
MNIST-Test 1.75 ± 0.02 2.29 ± 0.06

CFMs trained on CIFAR10

Standard GMM
CIFAR10-Test 3.42 ± 0.01 3.50 ± 0.01
SVHN-Test 2.32 ± 0.01 2.41 ± 0.01

CFMs trained on SVHN

Standard GMM
SVHN-Test 2.11 ± 0.00 2.20 ± 0.01
CIFAR10-Test 3.83 ± 0.01 3.94 ± 0.01

CFM models trained with a GMM base distribution provide likelihoods comparable to
what is achieved with the standard base distribution, at no additional computational cost
during training or inference. We do recognise that the standard base distribution works
surprisingly well on multi-class image data, despite not incorporating any class information,
and that the use of a multimodal base distribution does not alleviate the problem of unreliable

−4400 −4350 −4300 −4250

cifar10 svhn

(a) log p(zzz0) from CFMs trained on CIFAR10

Standard

−4600 −4500 −4400

cifar10 svhn

GMM

0 2000 4000 6000

in-dist

noise

black

white

(b) log p(zzz1) from CFMs trained on FashionMNIST

Standard

0 2000 4000 6000

in-dist

noise

black

white

GMM

Figure 3: Histograms of test data log-likelihoods under the base distribution (a) and under
the target distribution (b), for the training sets and base distributions as indicated.
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likelihoods for out-of-distribution data.
Our interest in multimodal base distributions was initially motivated by a significant

overlap of likelihoods assigned to in- and out-of-distribution data under a model that uses
a unimodal base. However, as we see in Figure 3(a), using a GMM does not necessarily
improve matters. Likelihoods assigned to out-of-distribution data remain higher compared
to in-distribution data, giving further merit to the suggestion that the problem may be due
to the data distribution [24] or the complexity of the data itself [28, 32]. We explore this
hypothesis for FashionMNIST, where the majority of training image pixels are close in in-
tensity to black (0) or white (255). In Figure 3(b) we show how CFM models trained on
FashionMNIST respond to an image of constant intensity 0 (“black”), an image of constant
intensity 255 (“white”), and images whose pixel intensities are uniformly random between 0
and 255 (“noise”). A model with the GMM base assigns higher likelihoods to constant im-
ages compared to the standard base. Centering the base distribution modes on the empirical
class means may encourage the model to assign higher likelihoods to more frequently oc-
curring pixels, rather than the semantic content. Interestingly, with the standard base, white
images are mapped to the most common likelihood values of the FashionMNIST test set. As
a sanity check, we see that images with random intensities have the lowest likelihoods.

Following Voleti et al. [32], we also test the degree to which conditional flow match-
ing models rely on pixel values, rather than semantic content, by inspecting likelihoods on
datasets of shuffled patches. Figure 4(a) shows an example test image from the CIFAR10
dataset, alongside shuffled versions that use 4 patches and 16 patches respectively. If FIDp
denotes the Fréchet inception distance score for a version of the CIFAR10 test set shuffled
using p patches, we find

FID1 ≈ 0, FID4 = 33.42, FID16 = 99.45.

This shows that shuffling images by 4 patches already influences the FID score significantly,
compared to the unshuffled baseline FID1. Care is taken to ensure that unshuffled images are
not in the dataset of shuffled patches.

The log-likelihood histograms in Figure 4(b) show that a CFM model with either the stan-
dard base or the GMM base assigns marginally lower likelihoods for the shuffled test images.
The overlap with likelihoods of the unshuffled (1 patch) test data is striking, considering how
much the FID is affected by this type of shuffling. Although sample quality and likelihoods
are independent [30], a large change in FID for shuffled images may indicate that the se-
mantic content of the images are significantly changed. We might hope that the likelihoods

1 patch 4 patches 16 patches

(a) shuffling of an example image

5000 10000 15000

1 patch 4 patches 16 patches

5000 10000 15000

(b) log p(zzz1), with standard (left) and GMM (right) bases

Figure 4: In-distribution test images are randomly shuffled, as illustrated in (a), leading to
the histograms of log-likelihoods shown in (b) under models that use the standard (left) and
GMM (right) base distributions.
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respond in a similar way, and that it does not may indicate an over-dependence on pixel con-
tent, as also seen for the FashionMNIST dataset in Figure 3(b). Such an over-dependence
is now further motivated by the observation that likelihood histograms are invariant under
shuffling of image patches, for both the standard and the GMM base distributions.

For an indication of generated sample quality, we show in Table 2 the FID for 50K
generated samples, from models trained on each of the four datasets, using the standard
and GMM bases. Across all the datasets, models using the standard base produce samples of
higher quality compared to the GMM base (with a large outlier for the SVHN model that uses
the standard base). We note that it is possible to obtain comparable FID scores for models
that use the GMM base, by setting the covariance scaling in ΣΣΣk (Equation 7) to σ2 = 1.
However, given the overall scale of our base distributions, where points have coordinates in
the interval (0,1), this value of σ2 would yield a GMM that is approximately unimodal. It
is curious that generated samples with the GMM base distribution do appear visually similar
to real samples, as demonstrated in Figure 5, despite large FID scores. We also remark that
sample quality can potentially be increased by training for longer.

Table 2: Fréchet inception distances of generated samples from CFM models trained with
the standard and GMM base distributions. We include in the last column results from models
that use a GMM base with larger covariance scaling.

Dataset Standard GMM GMM (σ2 = 1)

MNIST 03.20 ± 01.25 20.18 ± 07.31 02.00
FashionMNIST 05.37 ± 00.83 57.04 ± 06.64 07.50
CIFAR10 27.62 ± 01.78 64.85 ± 12.52 29.66
SVHN 33.10 ± 39.85 62.20 ± 21.54 50.06

G
M

M
St

an
da

rd
R

ea
ls

am
pl

es

MNIST FashionMNIST CIFAR10 SVHN

Figure 5: Real and generated samples from the best performing CFM models (according to
FID scores over 50K samples) with the standard and GMM base distributions.

Inspecting high FIDs. As mentioned earlier, there can be different factors influencing high
FIDs. Because of this, we report in Table 3 the precision and recall of generated samples
from a few specific models. Precision measures the realism of generated samples, while
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recall measures the degree to which the modes of the training data are covered [18]. For
CIFAR10, we select the best performing model for each base distribution, to determine why
models with a GMM base distribution lead to a high FID. For SVHN, we select the worst
performing models to compare the two base distributions (for this dataset, and the standard
base, one of the models in our training runs led to a large outlier in FID). For completeness,
we also include models that use the GMM with large covariance. The results in Table 3
suggest that, in fact, the GMM base leads to CIFAR10 samples that are more realistic (higher
precision) compared to the standard base. The higher FID scores can therefore be attributed
to mode-collapse, given the very low recall, which is surprising since we set the GMM
component means to the empirical means of the classes. For SVHN, the outlying FID score
can be attributed to a low precision. The GMM base consistently leads to mode collapse, but
produces more realistic samples, except for when we set the covariance scale to 1.

Table 3: Precision and recall scores for samples generated by our CFM models. Higher
is better, to a maximum of 1. For CIFAR10 we show results from the best performing
models over multiple training runs, and for SVHN the worst. The last row contains scores
for samples from random training runs (neither the best nor the worst), with the covariance
scaling for the GMM base set to 1.

Dataset Precision Recall

Standard GMM Standard GMM
CIFAR10 (best) 0.55 0.78 0.24 0.04
SVHN (worst) 0.32 0.64 0.50 0.23
SVHN (random; σ2 = 1 for GMM) 0.47 0.38 0.49 0.49

5 Conclusion and future work
Driven by an observation that high likelihoods for out-of-distribution data persist in the base
distribution of continuous-time normalising flow models trained with the conditional flow
matching objective, we explored whether multimodality in the base distribution may be ben-
eficial. Our results indicate that a multimodal base performs comparably to the standard
(unimodal) base, and may not be sufficient to alleviate the problem of unreliable out-of-
distribution likelihoods. CFM models with multimodal base distributions generate more
realistic samples but, surprisingly, suffer from mode collapse. This provides avenues for
further research. It might be worth investigating whether other (possibly learned) parame-
terisations of our GMM base distribution might allow for a better precision/recall trade-off.
Indeed, class-labelled data simplifies the parameterisation of the GMM, but it is still an open
question as to whether unlabelled data can be handled in a sensible way.

We also showed that CFM models may depend too strongly on pixel values, rather than
semantic content. It could be more effective to instead apply CFM models to a latent space
with semantic consistency. Kirichenko et al. [15] showed that it is possible to circumvent
unreliable likelihoods when training discrete flow models on features from a pre-trained
classifier, at the cost of the ability to generate samples. We hypothesise a similar result will
hold for CFM models, and aim to verify this in future for a latent space that maintains the
ability to generate samples.

In conclusion, our work contributes to the narrative on reliable likelihoods from scalable
continuous flow models.
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