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1 Entropy and Correlation Analysis
We further evaluate the global and intra-class performance of entropy and correlation anal-
ysis. As shown in Fig. 1, the proposed HQT has lower class-wise entropy and higher class-
wise correlation than the baseline network in most classes. On the other hand, as shown in
Table 1, our HQT increases entropy and decreases correlation on the global score, which is
the opposite of class-wise performance. These results indicate that the proposed HQT opti-
mizes both correlation and entropy regarding the Fisher criteria.
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Figure 1: Class-wise performance of the intra-class entropy and correlation.

Bi-half HQT+Bi-half CIBHash HQT+CIBHash

S(H) 0.999 0.998 0.999 0.993
Mean(S(Hi)) 0.986 0.940 0.989 0.966
ΩS(↑) 1.013 1.062 1.009 1.027

corr(H) 82.34 93.92 45.63 49.14
Mean(corr(Hi)) 57.59 69.88 52.82 57.29
Ωcorr(↓) 1.429 1.343 0.864 0.857

Table 1: Results of entropy and correlation
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2 Results on Additional Evaluation Protocol
Unsupervised hashing has been actively researched, so evaluation protocols differ across
methods. Therefore, we perform additional experiments on protocols to verify that our pro-
posed HQT is effective compared to additional methods. For a fair comparison, we used the
same protocols used in previous studies[3, 7] as summarized in Table 2.

Dataset Train Query Retrieval Class Metric

CIFAR-10(III)[3] 5,000 10,000 50,000 10 mAP@5000
CIFAR-10(IV)[7] 10,000 1,000 59,000 10 mAP@5000
NUS-WIDE(II)[3] 10,500 5,000 181,577 10 mAP@5000

Table 2: Details of the additional evaluation protocols.

We compare SOTA hashing networks such as BGAN[5], GreedyHash[6], BinGAN[8],
and TBH[4] in Table 3. Also, we perform more experimental comparisons on the same eval-
uation protocol of UHSCM[7]. In Table 3 and 4 show that our HQT method consistently
improves hashing performance on additional evaluation protocols.

Method CIFAR-10(III) NUS-WIDE(II)
16bits 32bits 64bits 16bits 32bits 64bits

BGAN 0.525 0.531 0.562 0.684 0.714 0.730
BinGAN 0.476 0.512 0.520 0.654 0.709 0.713
GreedyHash 0.448 0.473 0.501 0.633 0.691 0.731
TBH 0.532 0.573 0.578 0.717 0.725 0.735
Bi-half* 0.466 0.522 0.570 0.769 0.777 0.792
CIBHash 0.590 0.622 0.641 0.790 0.807 0.815
CIMON* 0.571 0.614 0.636 0.785 0.796 0.808

HQT+Bi-half 0.510 0.622 0.641 0.763 0.789 0.796
HQT+CIBHash 0.616 0.653 0.664 0.796 0.808 0.817
HQT+CIMON 0.658 0.671 0.710 0.785 0.807 0.815

Table 3: Experimental comparison between SOTA and our HQT on CIFAR-10(III) and NUS-
WIDE(II) protocols.

Method 16bits 32bits 64bits

UHSCM* 0.851 0.853 0.833
HQT+UHSCM 0.854 0.859 0.845

Table 4: Comparison UHSCM CIFAR-10(IV) results

3 Computational Cost for HQT
We measure the computational cost required by HQT for training a hashing network. Table
5 demonstrates that the computational cost needed to build HQT is significantly less than
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the overall training time. In addition, HQT is only utilized for calculating LHQT during the
training phase, hence there is no computational cost during the inference phase. Therefore,
we can conclude that the proposed HQT incurs a minimal additional computational cost dur-
ing only the training phase.

Dataset #Samples Hashing Network HQTBihalf CIBHash CIMON

CIFAR10(I)
16bits

5,000
1.00 1.60 2.01 0.02

32bits 1.01 1.72 2.03 0.03
64bits 1.00 1.69 2.04 0.05

CIFAR10(II)
16bits

50,000
7.62 14.80 16.40 0.18

32bits 7.67 14.98 16.50 0.34
64bits 7.69 14.81 16.50 0.68

Flickr25k
16bits

5,000
0.96 1.73 2.01 0.02

32bits 0.98 1.76 2.03 0.03
64bits 0.98 1.76 2.03 0.05

NUS-WIDE(I)
16bits

10,500
1.76 3.31 4.38 0.03

32bits 1.77 3.36 4.39 0.05
64bits 1.77 3.36 4.39 0.11

Table 5: Experimental results on the time complexity. The reported number for time con-
sumption is the hour. The time consumption to generate HQT is much less compared to the
training time of all hashing networks.

4 Empirical Study on Weighting Parameter

We conduct an empirical study on the value of α in Eq.3 of the manuscript. In Fig. 2, the
proposed HQT works favorably on α = 0.5 for both HQT+Bi-half and HQT+CIBHash.
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Figure 2: Experimental results on the weighting parameter α .
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5 Hyper-parameter Details
We trained HQT with the same hyper-parameters for each hashing network to ensure a
fair comparison. Table 6 provides implementation details for Bi-halfNet[1], CIBHash[3],
CIMON[2] and UHSCM[7]. All our experiments were conducted with PyTorch v2.0 and
torchvision v0.15.0, training on a NVIDIA RTX A5000.

hyperparameter Bi-half CIBHash CIMON UHSCM

backbone VGG-16 VGG-16 VGG-16 VGG-19
data augmentation False True True True

feature length 4096 4096 4096 4096
batch size 32 64 24 128
optimizer SGD Adam SGD SGD

weight decay 5e-4 0 1e-5 1e-5
momentum 0.9 0.9 0.9 0

lr 0.0001 0.001 0.001 0.006

Table 6: Hyper-parameter settings of our implementation.
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