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1 Additional examples
Fig. 1 shows additional examples of manipulating position with our method, Self-Guidance
[2] and Dragon Diffusion [3].

2 Quantitative evaluation
In addition to visual evaluation, we have calculated the following metrics:

1. Average number of objects removed by the pipeline. This is calculated using IoU-
based matching of bounding boxes between the original and the resulting images. In
other words, it means the number of objects that are present in the original image but
are not in the resulting one. The best value for this metric is 0 since the number of
objects is not supposed to change.

2. Average number of objects added by the pipeline. This is calculated the same way as
the previous metric. In other words, it means the number of objects that are not present
in the original image but are in the resulting one. The best value for this metric is 0
since the number of objects is not supposed to change.

3. Percentage of successful manipulations. The manipulation is considered to be suc-
cessful if the target object has a match after performing IoU-based matching. The best
value for this metric is 1 since we want the target object to be moved.

4. Average CLIP [5] and DINOv2 [4] similarity scores for matched detected objects.
For each pair of matched objects described above, we calculate CLIP and DINOv2
similarity scores to measure how the detected objects are preserved by our pipeline.
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Original image Our method Self-Guidance DragonDiffusion

(a) Move hot dog, id=1 by (0.3,0)

(b) Move donut, id=0 (the rightmost) by (0,−0.3)

(c) Move umbrella, id=0 (the leftmost) by (−0.5,0)

(d) Move bottle by (−0.5,0)

(e) Move snowboard, id=0 (the right) by (−0.3,0)

Figure 1: Additional examples of the position manipulations. Coordinates shift is repre-
sented by (x, y).

5. CLIP [5] and DINOv2 [4] similarity scores between original and resulting images.
This metric shows how well the overall image is preserved, including the background.

For calculating these metrics, we have selected 20 random captions from the COCO captions
dataset [1] and applied our pipeline to each of the captions selecting a random manipulation,
i.e. the manipulated object and the target positions are chosen randomly for the uniform
distribution. For this experiment, we have set w0 = 30.0, w1 = 8.0. The pipeline achieved
good object and image preservation, indicated by the high CLIP and DINOv2 similarity
scores. However, the number of removed and added objects is high as well as the portion of
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successful manipulations is very low. This might be caused by three possible reasons:

1. For each manipulation, the pipeline requires a different set of manipulation coeffi-
cients. Hence, setting a single set of weights for each manipulation may lead to suc-
cessful manipulations in some cases, but unsuccessful in others.

2. Since the position term in our manipulation pipeline focuses on maximizing the pixel
values in the target location in the cross-attention maps, sometimes the target object
appears in that location to be much larger than it was originally, making it not matched
to the original object and the manipulation considered to fail.

3. The object detector sometimes fails to detect some objects, leading to mismatches and
manipulations being considered failures.

Examples of failed manipulations can be seen in Fig. 2.

Table 1: Metrics for our pipeline calculated on COCO captions dataset
Average number of removed objects 0.185
Average number of added objects 0.214
Portion of successful manipulations 0.3
Average CLIP similarity score for matched objects 0.969
Average DINOv2 similarity score for matched objects 0.891
Average CLIP similarity score for images 0.991
Average DINOv2 similarity score for images 0.992
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Original image Our method

(a) Move hot dog, id=1 by (0.0,−0.5)

(b) Move bottle by (−0.5,0)

Figure 2: Failure examples for our method.


