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Abstract

Navigating unstructured traffic autonomously requires handling a plethora of edge
cases, traditionally challenging for perception and path-planning modules due to scarce
real-world data and simulator limitations. By employing the next-token prediction task,
LLMs have demonstrated to have learned a world model. D?>Nav bridges this gap by
employing a quantized encoding to transform high-dimensional video data (Fx3x128x256)
into compact integer embeddings (Fx128) which are fed into our world model. D3Nav’s
world model is trained on the next-video-frame prediction task and simultaneously predicts
the desired driving signal. The architecture’s compact nature enables real-time operation
while adhering to stringent power constraints. D3Nav’s training on diverse datasets
featuring unstructured data results in the model’s proficient prediction of both future video
frames and the driving signal. We make use of automated labeling to generate importance
masks accentuating pedestrians and vehicles to aid our encoding system in focusing on
objects of interest. These capabilities are an improvement in end-to-end autonomous
navigation systems, particularly in the context of unstructured traffic environments. Our
contribution includes our driving agent D> Nav and our embeddings dataset of unstructured
traffic. We make our code and dataset' public.

1 Introduction

Autonomous vehicle technology has rapidly evolved over the past decade, sparking significant
interest both in academia and industry [2, 3, 12, 17, 26, 40]. The overarching aim has been
realizing a fully autonomous system that can navigate complex traffic scenarios with the
same dexterity as a human driver, in both structured and unstructured traffic. In the context
of autonomous vehicles, “Unstructured Traffic" refers to environments where traffic rules
and infrastructure are not clearly defined or predictable, such as roads without markings,
areas with mixed traffic like pedestrians and cyclists, or unpredictable urban settings. These
scenarios pose significant challenges for autonomous vehicles, which rely on predefined rules
and algorithms, requiring advanced perception and decision-making capabilities to navigate
effectively. The predominant approach to autonomous driving has been the integration of
modular Al systems with hard-coded logic [20, 25, 29, 37, 42]. These systems, designed to
handle specific tasks, were combined hierarchically, each module contributing its piece to the
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overall puzzle of autonomous driving. While this modular design provided granular control
and allowed for specialized optimizations, it also introduced complexities. Such systems
tend to be fragile by nature and their performance tends to suffer when they are taken out of
structured traffic.

End-to-end systems emerged as an alternative, aiming to learn driving directly from raw
sensor data to control commands [5, 7, 11, 18, 31, 45]. While conceptually appealing due to
their simplicity, they have often shown limitations in grasping the multifaceted nuances of
driving. For instance, when confronted with rare or previously unseen scenarios, such systems
have failed to scale with data. The allure of large modular Al systems lies in their capacity to
yield results rapidly, each module tailored for a specific task. However, the system can be
quite fragile. Training each module to handle the vast spectrum of edge cases proficiently
is a daunting task. Manually annotating data, especially for rare and complex scenarios, is
time-consuming, expensive, and prone to human error. Furthermore, the inherent nature of
these systems makes it arduous to capture the subtleties of human driving, particularly the
implicit social contracts and non-verbal communication cues exchanged between drivers.

Amid these challenges, Generative Large Language Models (LLMs) powered by the GPT
architecture [34] have heralded a new era in machine learning. By focusing on the next-token
prediction task, LLMs have demonstrated proficiency in natural language tasks and have also
been shown to possess an internal world model. What is important to note about the GPT
architecture is that it is inherently an excellent sequence-to-sequence modeling tool and is
not specific to language. Recent approaches have validated the domain-agnostic properties of
GPT [6, 8, 35, 36].

Our Contributions. To build an agent with a world model suited to autonomous
navigation, we train D> Nav on the next-video-frame prediction task. D3Nav stands for Data-
Driven Driving and can be applied as an agent in the context of autonomous vehicles. Here,
by Data-Driven Driving we refer to learning from raw unlabeled driving video data. D*Nav
applies the quantized video encoding for compression with an autoregressive architecture to
generate future driving signals and future video frames based on past driving video inputs. By
harnessing the strengths of generative pre-trained transformers (GPT) for sequence modeling
and building an internal world model, D3Nav provides an efficient system for driving signal
generation. By making use of a compact architecture, our system can operate in real time and
under a tight power budget making it suitable to be deployed on-vehicle.

2 Related Work

GPT. Training GPT at a large scale, as exemplified in models such as GPT-3 [6], GPT-4 [32]
and LLAMA [41] has shown several noteworthy emergent properties. These properties
include an enhanced capacity for natural language understanding and generation, improved
performance in zero-shot and few-shot learning scenarios, and the ability to generate creative
and contextually relevant responses across a wide range of topics. The remarkable ability of
advanced GPT models to have an internal world model and generate contextually relevant
information makes them particularly suitable for applications such as autonomous vehicle
technology. However, the challenge in applying GPT to such a domain lies in having to input
high-dimensional video data.

GPT for Vision. We have seen recent approaches of feeding video and images into GPT.
ImageGPT [33] reveals that GPT’s architecture, renowned for its efficacy in language models,
can be adeptly adapted to process and generate visual data as well. ImageGPT is trained on the
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Figure 1: D3Nav architecture takes the past F frames as input. These frames are resized,
normalized, and input to the encoder. The resultant embeddings are tokenized and input
to GPT which yields future tokens that are decoded to produce the next F' frames of video
output. The vehicle’s recent trajectory is extracted using Visual Odometry and is fed in as
context. Finally, the future trajectory tokens are decoded to produce the model prediction for
the desired vehicle trajectory. We then use MPC to compute the driving signal. Note that this
is the model being used in inference mode, during training, the Encoder-Decoder, Trajectory
Quantizer, and the GPT are trained separately.

MNIST dataset and its scope is limited to handwritten digits in single frames. VideoGPT [46]
and [14] apply GPT in the context of raw video generation. VideoGPT makes use of the
BAIR Robot dataset, UCF-101, and the Tumbler GIF dataset. However, these approaches do
not explore autonomous navigation datasets and the extraction of a driving signal.
Generative Al for Robotics. Wayve’s closed-source Generative Al for Autonomy
(GAIA-1) [19] shows an application of GPT-based generative video models in the domain
of autonomy. GAIA-1’s training dataset of about 4,700 hours was gathered in the structured
traffic context of London, UK between 2019 and 2023. GAIA-1 is also a 9B parameter
world model which is difficult to get working within a vehicle given the power constraints.
Approaches like [14, 23, 38] show that it is possible to control and direct the generation of
video frames from a generative model which is relatively compact when compared to GAIA-1.
However, they do not focus on the domain of autonomous navigation. Finally, [22] shows
how one can use Generative Adversarial Networks as neural simulators in the context of
autonomous vehicles in structured traffic. Taking inspiration from these works, we build a
power-efficient and open-source driving agent familiar with navigating unstructured traffic.

3 Proposed Work

3.1 Architecture

As described in Figure 1, D3Nav takes the past F video frames as input and produces the
next F' video frames as output. The down-scaled video is then quantized by the encoder
leading to efficient compression to produce video embeddings of dimensions F' x 128. The
tokenized video embeddings are subsequently input into the GPT world model, known for
its sequence-to-sequence transformation capabilities. The world model outputs future video
tokens, which are prospective representations of driving signals and future video frames. The
trajectory tokens are decoded and Model Predictive Control (MPC) [4] is used to compute
the optimal series of actuator signals. The future video tokens are passed through a decoder,
which is trained symmetrically with the encoder which reconstructs the video representation.
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Figure 2: Importance Maps. The first column shows the input video frames and the second
column presents the corresponding importance maps, with the entire scene’s importance
scaled from zero to one as a function of distance and semantics.

‘Ground Truth Ground T ruth Quantized " Prediction BEV Trajectory

Figure 3: D3Nav Trajectory Output. We have plotted out D3Nav’s future video frame
prediction and have overlayed the desired driving signal. The ground truth is plotted in green,
the quantized ground truth is plotted in blue and the model prediction is plotted in red. We
have projected the trajectories onto the image plane. We have also plotted the Bird’s-Eye-View
(BEV).
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Figure 4: D*Nav Output. Above are frames that are generated by D3Nav when given a past
video context as a prompt. The first column presents the last video frame from the input
prompt. The subsequent three columns are the future frames predicted. The model is able to
predict the flow of the unstructured traffic.

Figure 5: We extend the Bengaluru Driving Dataset [13] with semantic labels and trajectory
labels. This trajectory has been calculated from visual odometry. Each panel consists of the
RGB image with 2D semantic labels on the top left, the depth map on the bottom left, and the
3D plot on the right. The vehicle and pedestrian classes are colored blue and red respectively.
Objects without classes have been plotted as a height map for the sake of visualization. The
vehicle and its future trajectory have been plotted out in grey and green respectively.
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3.2 Auto-Labeling Pipeline

To build a driving agent that scales well, we must ensure that the dataset generation pipeline
also scales well. This reduces human involvement in generating the dataset. We make use
of auto-labeling in the context of our semantic masks, depth maps, driving signal labels to
generate importance maps. The importance masks only guide the model to have a more
detailed representation of these regions as shown in Figure 2.

Driving Signal Labeling. We make use of Visual-Odometry, GPS, and IMU to extract
the traversed ego-trajectory and speed from the video data as shown in Figure 5. We make
use of the Shi-Tomasi Feature Extraction [39] to extract and track 2000 key points from the
video and apply SLAM [30] to extract the trajectory.

Depth Boosting. Taking inspiration from the depth boosting techniques [13, 27, 28], we
merge the depth maps from the various resolutions to generate high-resolution depth maps
with global consistency. We use this method to generate depth labels for the Indian Driving
Dataset as shown in Figure 5.

Semantic Segmentation auto-labeling. To produce high resolution 2D semantic labels,
we take inspiration from PointRend [9]. We take an image as input and produce a coarse
intermediate segmentation map using an existing segmentation approach MaskRCNN [16].
This coarse map is gradually up-sampled using bi-linear interpolation and only the regions of
the resized map with high uncertainty are refined by a lightweight multi-layered perceptron.
The uncertain regions typically include the boundaries of objects. As shown in Figure 5, we
label the semantics and using the depth maps we are able to project them into 3D semantic
occupancy grids.

Importance Maps. We use depth and semantic labels to assign higher importance to
regions of interest in the image. These maps are used to bias the loss of our Encoder-Decoder
to focus more on objects of importance (semantics) and those closer to the camera (depth).
We accept as input an RGB frame, a corresponding segmentation mask, and a depth map,
along with several parameters that guide the mask generation. The output is an importance
map (Fpyr) which assigns weights to different parts of the image based on depth and semantic
cues as shown in Figure 2. Further details on the computation of these maps are presented in
Appendix A2.

3.3 Training

Our architecture is split into three main components. The Encoder-Decoder which condenses
the image input into a quantized embedding space. The trajectory quantizer takes the trajectory
as input and tokenizes it. The GPT world dynamics model takes in the quantized image
embeddings and trajectories as input and learns the world dynamics. These three are trained
separately and are integrated together in inference mode as shown in Figure 1.
Encoder-Decoder. We train the Encoder-Decoder system inspired by VQ-VAE [43] to
learn a compact representation of unstructured traffic video frames. At first, the model learns
the dataset reasonably well, but most of the frames it generates tend to be a bit blurry and
unfocused. To mitigate this, we apply the importance maps to guide it to focus on pedestrians,
vehicles, and nearby objects. This produces a model that is able to transform between the
image space (3x128x256) and the integer latent space of (128). We experiment with latent
spaces of dimensions 128 and 512, with a compression ratio of 256x and 64x respectively.
We ended up using the smaller latent space as it allowed us to feed in more frames as context
into the GPT module. With each frame taking up 128 tokens and setting our GPT to have a
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maximum context length of 4096, of which the first 2048 are taken up by the input and the
last 2048 are the output. This allows us to feed in 16 frames as context.

GPT. Once we generate our embeddings dataset from the Encoder-Decoder pair, we
begin training the GPT module. We feed in 3 to 6 frames as input and query for 3 to 6 frames
as output respectively. To feed in the frames, we structured our prompt with delimiters and
end tokens. Training with multiple frames as context provided temporally consistent results.

Driving Signal. We are able to extract the past vehicle trajectory using Visual Odometry.
This trajectory is encoded into tokens for every frame using a set of template trajectories and
K-Means Clustering. Initially, we observe that the model takes a large number of epochs
to learn the trajectory tokens since they are a small fraction (< 10%) of the total number of
tokens. We fix this by weighting the loss associated with the trajectory tokens to increase their
importance. To extract the final driving signal, we apply Model Predictive Control (MPC) [4]
to compute the optimal steering, throttle and braking values.

Loss. Our loss function is a convex combination of three components: image, video and
trajectory reconstruction losses. Since the trajectory tokens make up a smaller fraction of the
total number of tokens produced, they have a higher weight in the loss function. We use the
Cross-Entropy loss to supervise the tokens predicted. Further details are in Appendix A3.

4 Experiments

We train D> Nav on a laptop with an Intel i7-12700H (20 threads) and NVIDIA GeForce RTX
3070 Mobile GPU with 8 GB VRAM. We make use of A100 GPU clusters to train larger and
deeper networks. To focus performance in unstructured traffic, our network has been trained
on the Indian Driving Dataset [44] and the Bengaluru Driving Dataset [13].

4.1 Datasets

Indian Driving Dataset [44] . The IDD has a total of about 7974 frames with 6993 and 981
frames for training and testing respectively.

Bengaluru Driving Dataset [13]. The raw video BDD has a total of about 71 thousand
frames. We split it to have 10% for testing.

CommaVQ Dataset [47]. The dataset consists of 100,000 heavily compressed driving
videos which we use as a base to fine-tune our Encoder-Decoder pair.

Bengaluru Embeddings and Trajectory Dataset (Ours). We extend BDD with image
embeddings and vehicle trajectory labels. The image embeddings allow us to feed the video
data into GPT as a condensed and quantized set of embeddings. Each image can be represented
as a set of 128 tokens. Extending the BDD video dataset gives us around 9 million tokens to
train on. The vehicle’s ego-motion is extracted from the video dataset using Visual Odometry.

4.2 Quantitative Results

We evaluate D3Nav in the domains of image reconstruction, next-video-frame tokens predic-
tion and driving signal (trajectory) accuracy.

Encoder-Decoder. We evaluate our Encoder-Decoder on RMSE, ay, a3, a3, and com-
pression while tracking the hyper-parameters such as learning rate, loss weight distribution,
number of epochs and batch size as shown on Table 2. Once the Encoder-Decoder achieved
a satisfactory score, we fine-tuned it using the importance maps to focus the model on the
important objects on the road. While the RMSE score on the image increases by about 37%,
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Hyperparameters Metrics
L Dg Dg Dy LR F1 Prec DTW CE FPS

XS 6 0200 0.300 0.0003 0.00003 0318 0318 272 3.159 35.021
S 12 0.500 0.500 0.0003 0.0003 0370 0370 26.1 2.766 32.683
M 24 0.100 0500 0.0003 0.0002 0.395 0395 246 2522 24570
L 36 0.200 0.200 0.100 0.0003 0458 0458 232 2277 20.276
XL 48 0500 0300 0.300 0.003 0462 0462 185 2230 17.702

Table 1: Quantitative Results on our proposed architecture comparing the optimal hyper-
parameters and metrics achieved. The table shows the hyper-parameters Number of Layers L,
Embeddings Dropout Dg, Residual Dropout Dg, Attention Dropout D4, and Learning Rate
LR. We have evaluated on the metrics F'1, Precision Prec, Dynamic Time Warping Distance
[1] DTW, Cross Entropy CE and Frame Rate FPS.

Size

Hyperparameters Metrics
LR B BS RMSE M.RMSE ai ap as Comp.

Viexs ~ 0.0003 0.1 32 03920 03920 07952 009549 0.9514  256x

Varxie  0.00003  0.25 32 0.3649 0.3649 0.7979  0.9637  0.9590 64x

V{g”xg 0.0003 0.1 32 0.5396 0.3945 0.7231 0.8892 0.9051 256x

VM o 000003 025 32 04982 03587 07418 0.8979 09134  64x
Table 2: Our Encoder-Decoder pair was trained on our video datasets to learn an efficient
embedding space. We optimize for Learning Rate LR, Beta 3, Batch Size BS. Beta decides
the weight given to the commitment loss[43]. We evaluate on the metrics RMSE, Masked
RMSE, al, a2, a3 and Compression. a; is the fraction of predictions where the threshold
maximum between gt/pred or pred/gt is less than 1.25. Models with superscript IM were
trained with importance masking. We use the V{éwxg as our primary encoder.

Model

the masked RSME score is largely unaffected. This indicates that the fine-tuned model has
learned the masked regions better.

GPT. We evaluate the GPT sub-module on the metrics of F1 score, Perplexity, Precision,
Recall, Cross Entropy, and measure its frame rate. We track the hyper-parameters: number
of layers, the various dropout values, forward expansion, learning rate, and weight decay as
shown in Table 1. We also visualize the future frames predicted in Figure 4. Through our
hyper-parameter sweep, we observe that increasing the number of frames of context has a
positive correlation with the performance of the model. An increase in the number of layers is
shown to increase accuracy. We also evaluate the speed of each variant of our model and show
that D3> Navy, strikes a balance between speed and accuracy. While D?Navy; is not as fast,
large models can be used as simulators to supervise smaller models. We compare our approach
to Action-RNN [10], SAVP [24], WorldModel [15], GameGAN [21], and DriveGAN [22] in
terms of image reconstruction as shown in Table 3 and we visualize the same in Table 4.

Driving Signal. Once D3Nav had been trained on the larger embeddings dataset, we
fine-tuned it on the trajectory dataset. We observe that our model can predict the desired
trajectory token with high accuracy as shown in the DWT Distance metric in Table 1. We
visualize the same in Figure 3. We plot the ground truth trajectory and the quantized ground
truth trajectory along with the model’s prediction. We observe that the model is able to
associate trajectory templates that are similar to each other as even if the model does not
predict the exact trajectory correctly, it tends to get the general direction correct.
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Model | Abs. Rel. Sq.Rel. RMSE  al a2 a3

Action-RNN [10] 2.874 1.459 8.615 0.605 0.807 0.902
SAVP [24] 2.663 1.290 8.359 0.607 0.890 0.901
WorldModel [15] 2.984 1.790 9472 0406 0.614 0.736
GameGAN [21] 3.056 1.481 8.541 0.589 0.786 0.884
DriveGAN [22] 2.368 1.329 8.679 0.586 0.785 0.881
Ours 2.293 1.126 7.790 0.723 0.889 0.905

Table 3: A comparison of the next frame image reconstruction metrics of D>Nav with the
published visuals of Action-RNN, SAVP, WorldModel, GameGAN, and DriveGAN on Real
World Driving (RWD) [22].

61y T +1 T +2 T +3 GTy T +1 T3+1 T3+2 T3+3
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Table 4: We compare our approach with the pubhshed outputs of Actlon RNN [10],
SAVP [24], WorldModel [15], GameGAN [21], and DriveGAN [22]. Above we have pro-
vided three examples being GT1, GT; and GT3 along with the corresponding model outputs
forthesameat7 +1,7T+2and T +3

4.3 Discussion and Limitations

As demonstrated by the results, D3Nav produces temporally coherent video output given a
video context prompt. The use of importance maps focuses the Image Encoder on semantics
(discernible objects) and depth (higher importance to objects closer to the camera). Further,
the results demonstrate that D*Nav can predict driving signals with high accuracy. Presently,
the Image Encoder compresses frames to a latent space of size 16 x 8. This limit was chosen
due to memory constraints while training and in consideration of the number of frames that
must be input to the model as context. Increasing the context length would allow us to
increase the number of tokens per frame. This would increase the latent space dimensions,
thereby increasing the image reconstruction quality. While the proposed D3Nav model is
relatively lightweight, we expect the next frame prediction and trajectory prediction system’s
performance to scale with the size of the dataset.
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5 Conclusions

D?Nav offers a compelling solution to the inherent challenges of autonomous navigation in
unstructured traffic environments. By utilizing quantized encodings, our system efficiently
compresses high-dimensional video and trajectory data into embeddings that retain essential
visual information. The automated importance labeling mechanism is pivotal in highlighting
critical elements such as pedestrians and vehicles, enabling the predictive model to focus on
key aspects of the traffic scene without the need for exhaustive human labeling efforts. The
ability of D*Nav to efficiently predict future video frames and the desired control signal with
minimal human intervention through the entire training pipeline marks an advancement in
the field. This progress is particularly beneficial for building a driving agent or simulating
training scenarios where real-world data is scarce or incomplete. The generated dataset of em-
beddings and trajectory labels presents a valuable asset for further research and development
of autonomous driving agents and simulators.
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