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6 Supplementary Material: Learning to Project for
Cross-Task Knowledge Distillation (Submission 448)

6.1 Code

We include our anonymised code in the accompanying .zip file, and will release it publicly
upon acceptance. Our codebase is written in Python using PyTorch [56] and is based on
several other codebases:

¢ Monocular depth estimation student: we build on the codebase of AiT [54], which is
built in turn on MMDetection [53]. No license is specified in the original AiT repository.
MMDetection is released under the Apache license.

* Semantic segmentation: our code builds on the pipeline of
github.com/yassouali/pytorch-segmentation
(released under MIT license).

* Image-to-image translation: our code builds on the official PyTorch implementation
of Pix2Pix and CycleGAN (released under the BSD license):
github.com/junyanz/pytorch-CycleGAN-and-pix2pix

A full README is included in the code release, and includes instructions for setup,
evaluation, and training.

6.2 Full monocular depth estimation results

Table 1 shows only some metrics for monocular depth estimation (MDE) on NYUv2 [68]
for the sake of brevity. We include here four additional tables showing the performance on
all available metrics of a depth estimation student when distilled to from teachers trained for
different tasks. Each table also includes metrics for the baseline, which is a student model
trained without any distillation setup of any kind (i.e. only the task loss L, is used). Full
details of the metrics used are in section 6.5. See section 6.3.1 for complete architectural
details and section 6.4 for loss function details.

Each table shows a single teacher/student task pair, and compares four different knowledge
distillation methods when using both the traditional projection and our inverted projection,
as well as including a percentage Improvement showing the difference in performance when
using our inverted projection compared to the traditional projection.

Table 4 shows results using a depth estimation teacher. As the teacher and student tasks
are identical and the task-specific features in the teacher are desired for the student model,
the traditional projection produces a greater performance improvement than our inverted
projection.

Table 5 shows results using an instance segmentation teacher. Instance segmentation
produces both semantic labels and instance labels, and the semantic masks and labels are
known to be useful for depth estimation (see section 2), so while the teacher and student tasks
are different, they are similar to one another. Therefore, we see that the traditional projection
still outperforms our inverted projection in most cases, as expected.

Table 6 shows results with a classification teacher. This is a cross-task setup: classification
is relatively unrelated to monocular depth estimation. As a result, it can be seen that our
inverted projection outperforms the traditional projection.
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Depth (Most similar) — Depth

Method Projection type | & 1 &1 &1 | Abs.Rel.| Sq.Rel. | RMS| RMSL|
No teacher (baseline) 0.845 0.974 0.995 0.127 0.078 0.440 0.160
£0.007 +0.001 £0.000 +0.003 +0.002 £0.005 +0.003
FitNets [64] Traditional 0.868 0.979 0.996 0.117 0.069 0.406 0.148
ICLReZSOIS Inverted (Ours) | 0.849 0.976 0.995 0.124 0.075 0.432 0.157
Improvement 2.17%  -0.34% -0.01%
AT [82] Traditional 0.856 0.976 0.995 0.122 0.073 0.426 0.155
ICLR 2017 Inverted (Ours) 0.856 0.977 0.995 0.122 0.073 0.425 0.155
Improvement -0.11%  0.06% 0.01% -0.08% 0.82% 0.02% 0.00%
PKT [55] Traditional 0.854 0.978 0.996 0.122 0.072 0.429 0.155
EC CV‘ 2 018 Inverted (Ours) | 0.854 0.977 0.996 0.122 0.073 0.427 0.155
Improvement 0.04% -0.09%  0.02% -0.16% -1.38% 0.42% 0.19%
Traditional 0.861 0.978 0.996 0.119 0.070 0.416 0.151
Ensemble [15]
NeurIPS 2022 Inverted (Ours) | 0.849 0.975 0.996 0.124 0.076 0.433 0.157
Improvement -1.46%  -0.29% -0.05%

Table 4: Depth teacher — Depth student (no task gap). As expected, in same-task settings,
our inverted projection produces a smaller improvement than the traditional projection.
Improvement is % change using our inverted projection over using the traditional projection.
See section 6.3 for model details. Baseline + figures are variance from 3 runs.

‘ B Instance Segmentation — Depth

Method Projection type | & 1 &1 &1 | Abs.Rel.| Sq.Rel.| RMS| RMSL]|
No teacher (baseline) 0.845 0.974 0.995 ‘ 0.127 0.078 0.440 0.160
+0.007 +0.001 +0.000 +0.003 +0.002 +0.005 +0.003
FitNets [64] Traditional 0.855 0.977 0.996 0.122 0.073 0.425 0.154
1CLR 2015 Inverted (Ours) | 0.851 0975 0995 | 0.124 0.075 0431 0.157
Improvement -041%  -0.25% -0.02% -1.78% -2.52% -1.31%  -1.68%
AT [82] Traditional 0.852 0.976 0.995 0.123 0.075 0.431 0.156
ICLR 2017 Inverted (Ours) 0.855 0.978 0.995 0.121 0.073 0.429 0.155
Improvement 0.42% 0.16% 0.00% 1.38% 1.74% 0.53% 0.77%
PKT [55] Traditional 0.857 0.976 0.995 0.123 0.075 0.427 0.155
ECCVEOIS Inverted (Ours) 0.854 0.976 0.995 0.123 0.075 0.429 0.156
Improvement -0.34% 0.04% 0.01% -0.08% -0.13% -0.44% -0.52%
Ensemble [15] Traditional 0.856 0.977 0.996 0.122 0.072 0.425 0.154
NewrIPS 2022 Inverted (Ours) 0.848 0.975 0.995 0.124 0.076 0.435 0.157
Improvement -0.95%  -0.16% -0.05% -1.64% _ -2.16%  -1.88%

Table 5: Instance segmentation teacher — Depth student (small task gap). The two
tasks are different, but are similar enough that the traditional projection produces greater
improvements than our inverted projection does with most methods. Improvement is % change
using our inverted projection over using the traditional projection. See section 6.3 for model
details. Baseline + figures are variance from 3 runs.
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B Classification —> Depth

Method Projection type & 1 5t 81 ‘ Abs.Rel. | Sq.Rel. |  RMS| RMSL /|
No teacher (baseline) ‘ 0.845 0.974 0.995 0.127 0.078 0.440 0.160
+0.007 +0.001 +0.000 +0.003 +0.002 +0.005 +0.003
FitNets [64] Traditional 0.845 0.976 0.996 0.125 0.076 0.439 0.158
ICL 1; 2S 0 1)5 Inverted (Ours) | 0.850 0.975 0.995 0.124 0.075 0.434 0.157
Improvement 0.50% -0.06%  -0.03% 0.53% 0.44% 1.34% 0.80%
AT [82] Traditional 0.850 0.976 0.995 0.125 0.076 0.433 0.157
ICLR 5 017 Inverted (Ours) | 0.853 0.976 0.995 0.123 0.074 0.430 0.156
Improvement 0.35% 0.08% 0.02% 1.61% 3.03% 0.79% 0.83%
PKT [55] Traditional 0.851 0.975 0.996 0.124 0.076 0.432 0.157
EC CVi 2 018 Inverted (Ours) | 0.853 0.976 0.995 0.123 0.074 0.431 0.156
Improvement 0.25% 0.05% -0.03% 1.29% 2.50% 0.30% 0.64%
Traditional 0.852 0.976 0.995 0.124 0.075 0.431 0.156
Ensemble [15]
NeurlPS 2022 Inverted (Ours) | 0.847 0.975 0.995 0.125 0.076 0.437 0.158
Improvement -0.63%  -0.12%  0.02% -0.89% -1.61% -1.30%  -1.09%

Table 6: Classification teacher — Depth student (larger task gap). The two tasks are
different enough that the setting becomes more “cross-task" than “same-task", and our inverted
projection begins to outperform the traditional student model in terms of improvement over
the baseline. Improvement is % change using our inverted projection over using the traditional
projection. See section 6.3 for model details. Baseline £ figures are variance from 3 runs.

B Random (Least similar) — Depth

Method Projection type 8 1 (X & 1 \ Abs.Rel. |  Sq.Rel. | RMS| RMSL|
No teacher (baseline) 0.845 0.974 0.995 0.127 0.078 0.440 0.160
+0.007 +0.001 +0.000 +0.003 +0.002 +0.005 +0.003
FitNets [64] Traditional 0.828 0.970 0.995 0.134 0.084 0.455 0.167
I CLl: 2 0 ; 5 Inverted (Ours) | 0.851 0.976 0.995 0.124 0.075 0.431 0.156
Improvement 2.86%  0.58% 0.08% 7.47% 11.15% 5.20% 6.36%
AT [82] Traditional 0.857 0.977 0.996 0.121 0.073 0.428 0.154
ICLR 2017 Inverted (Ours) | 0.857 0.976 0.995 0.122 0.074 0.428 0.155
Improvement 0.05% 0.04%  -0.03% -0.83% -1.37% 0.09% -0.39%
PKT [55] Traditional 0.856 0.975 0.995 0.123 0.075 0.429 0.155
EC C\; 2 018 Inverted (Ours) | 0.858 0.976 0.995 0.122 0.073 0.426 0.155
Improvement 0.29%  0.10% 0.00% 1.22% 2.80% 0.84% 0.58%
Ensemble [15] Traditional 0.835 0.973 0.995 0.128 0.079 0.446 0.162
NewrlPS 2 02‘2 Inverted (Ours) | 0.849 0.976 0.996 0.124 0.075 0.432 0.157
Improvement 1.74%  0.26% 0.06% 2.75% 4.96% 3.03% 3.39%

Table 7: Randomly-initialised teacher — Depth student (largest task gap). Our inverted
projection produces significant improvement. Improvement is % change using our inverted
projection over using the traditional projection. See section 6.3 for model details. Baseline +
figures are variance from 3 runs.
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(a) Input (b) Ground Truth (c) Depth Teacher  (d) Insseg Teacher (e) Random Teacher

Figure 2: Qualitative results on NYUv2 (depth) using different teacher tasks: results
from depth estimation, instance segmentation, and randomly-initialised teachers on a Mo-
bileNetV2 [24] student. In each case, we use the optimal projection type for the teacher task:
the depth teacher’s task-specific knowledge is desired, so we use a traditional projection,
whereas the instance segmentation and random teachers both have irrelevant knowledge that
must be discarded and so perform best with our novel inverted projection, which is able to
remove the irrelevant features if needed.

Table 7 shows results with a randomly-initialised and frozen teacher model. The randomly-
initialised teacher does not contain any task-specific knowledge whatsoever, and therefore
the task-gap between the teacher and the student model is maximised. As this is the most
cross-task setting, our inverted projection performs the best in comparison to the traditional
projection, as it is only our inverted projection that is able to successfully discard the con-
founding features present in the randomly-initialised teacher.

We also provide qualitative examples using same-task, similar-task, and randomly-
initialised teachers on a different depth estimation student, shown in figure 2. In all cases, we
are able to obtain qualitatively good performance.

6.3 Model details

This section details the different student and teacher architectures used for our experiments.

6.3.1 Depth estimation

Teacher models: The teacher models used for depth estimation are:

¢ Depth teacher: SwinV2-B [43] pretrained on NYUV2 as part of the All In Tokens [54]
framework. 2, available from the official AiT repository>.

* Instance segmentation teacher: SwinV2-B pretrained on COCO [41] as part of the
All In Tokens framework.

2https://msravcghub.blob.core.windows.net/ait-release/checkpoint/ait_
depth_swinv2b_ar.pth
3https://github.com/SwinTransformer/AiT
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¢ Classification teacher: ViT-B-16 pretrained on ImageNet-1K, available from the
torchvision model hub®.

Student Models: The depth estimation students used have one of three backbones:
* MobilenetV?2 [24]: In our experiments, we use a width multiplier of 0.5.
o EfficientNet-BO [71].
* ResNet-50 [28].

The decoders used are (names in this font):

* Decoder: Convlxl, then 6 blocks of (LeakyReLU + Conv3x3 + LeakyReLU +
Conv3x3). At the input to each of the 6 blocks, an incoming skip connection from the
encoder is bilinearly upsampled to match the feature resolution, then concatenated to
the features.

* Decoder_dl12: The same as Decoder, except the second Conv3x3 in each block is
replaced with a depthwise convolution to reduce parameters.

* ULightDecoder_skip_4b: Convlxl, then 4 blocks of (LeakyReLU + Conv3x3).
As in the other decoders, each block receives features from an incoming skip connection,
which are upsampled to match the feature resolution and then concatenated.

6.3.2 Semantic segmentation

Teacher models: The teacher models used for semantic segmentation are:

» Segmentation teacher: A DeepLab-V3 [8] with a ResNet-50 backbone, pretrained on a
subset of MSCOCO that uses only the 20 categories present in the Pascal VOC dataset.
Model and checkpoint loaded from torchvision model hub*.

e (Classification teacher: ResNet-50 [28] pretrained on ImageNet-1K. Model and check-
point loaded from torchvision model hub?.

Student model: The student model used for semantic segmentation was a DeepLabV3 [7]
with a ResNet50 backbone that is pretrained on ImageNet-1K. The pretrained weights were
sourced from the torchvision model hub®.

6.3.3 Satellite-to-map and Colorization

We use the same teacher models described in section 6.3.1. For the student models on the
satellite-to-map experiments, we use a CycleGAN, while for the colorization experiments
we use a Pix2Pix model. This Pix2Pix model follows a standard UNet-like architecture with
batch norm layers.

“https://pytorch.org/vision/stable/models.html
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6.4 Task losses

In addition to the projection loss L4;i11, each student is trained with a task-specific loss Ly,
to supervise its output. The task and projection loss components are weighted equally, as in
equation 2.

The depth task loss function used is a variant of the Scale-Invariant Log-Loss (SILog),
first proposed by [19] and modified by [6]:

1 0 15
‘CSILog =10 E Zgzz (Z gl) (7)
i=1

where ground-truth and predicted depth values for pixel i are given as d; and d; respectively,
gi =log(d;) —log(d}) and K is the total number of pixels with valid depth values. Semantic
segmentation students are trained with a pixelwise cross-entropy loss. For the colourization
task we use the vanilla GAN loss[26] in addition to an L1 loss with a weighting of 100.0. For
the satellite-to-map translation we use the cyclic consistency loss described in the original
CycleGAN paper [86].

6.5 Evaluation metrics
Monocular depth estimation. We use the metrics defined in [19]:

* Abs relative difference (Abs): % ,-T=1 ld’;d" ‘,

* Squared relative difference (Sq): 7 Z M

i

RMSE (RMS):

7 Lio lldi—d; |1,

Log RMSE (RMSL): \/ + TL, [llog(d;) — log(d; )|

The threshold accuracy 6,: % of d; s.t. max((’;* , f{ ) = 6 < thr, where J, denotes that

thr = 125" (weusen € {1,2,3}). T denotes the total number of valid pixels in the
ground truth depth map. d; and d; represent the predicted and ground-truth depth values
at pixel i respectively.

6.6 Datasets

For semantic segmentation students, we use the ADE20K Scene Parsing dataset [85], a
150-class subset of the full ADE20K dataset. It contains 20210 training images and 2000
testing images from a variety of indoor and outdoor scenes.

For depth estimation students, the NYUv?2 dataset [68] is used, an indoor monocular depth
estimation dataset containing 24231 training 654 test examples. Students are trained for 25
epochs.

For image colorization and satellite-to-map translation, we use the CMP Facades [74]
and Maps datasets used in Pix2Pix [32], both of which are available from https://
efrosgans.eecs.berkeley.edu/pix2pix/datasets/. The Maps dataset was
scraped from Google Maps by the Pix2Pix authors.
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(a) Input Image (b) Predicted Depth

Figure 3: Qualitative results using a frozen segmentation encoder and frozen depth
decoder. With only a learned linear projection, features from the semantic segmentation task
can be made immediately useful for depth.

6.7 Hyperparameters

Monocular depth estimation. Depth estimation students were trained for 25 epochs using
the AdamW optimizer with a learning rate of 2e-4 and weight decay of 0.05. The OneCycle
learning rate scheduler was used [69] with the maximum learning rate set to 2e-4. The batch
size was set to 16.

Semantic segmentation. Semantic segmentation students were trained for 80 epochs using
the AdamW optimizer with a learning rate of Se-3 and weight decay of le-2. The OneCycle
learning rate scheduler was used, with the maximum learning rate set to Se-3. The batch size
was set to 20.

Image-to-image translation (satellite-to-map, colorization). Each model for both of these
tasks are trained for 200 epochs using the AdamW optimizer with a learning rate of 2e-4. We
keep the initial learning rate for the first 100 epochs and then linearly decay the rate to zero
over the next 100 epochs with a batch size of 8.

6.8 Linear mapping between task spaces

In performing cross-task distillation, we assume there is an overlap in information in the
representation spaces across different tasks, following both the work in the literature and
intuition (see section 2). [47] demonstrated the existence of a learnable linear mapping
between text and image features. Concurrently, research has shown that linear projections are
very effective for knowledge distillation[15, 49]. However, a natural unification of these two
settings has not been explored.

We experimentally verify the validity of this assumption with a simple toy scenario, in
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(d)
Figure 4: Evolution of singular values of the projection matrix P under different cross-task
settings and projector types. An L2 loss is used. Green area highlights the rank of P. The
projection tends towards a higher rank either when using the traditional projection or when
using a same-task or similar-task teacher. The low-rank when using our inverted projection
in the cross-task setting allows irrelevant features to be filtered out, if necessary for the task
pair. Top row: traditional projection, Bottom row: our inverted projection. Numerical rank
is used with a tolerance set to o x0.01.

Seg. — Seg.

which a frozen encoder pretrained on instance segmentation is connected via a learnable
linear projection to a frozen decoder pretrained for depth estimation. Example qualitative
results in figure 3 show that the linearly projected cross-task features can be successfully
utilized to generate a coherent output, despite both models being frozen. In fact, by only
training the linear projector between these two frozen models, we can attain 0.504 RMSE on
NYUv2. This result indicates that a significant portion of the information contained in the
instance segmentation features are closely related to the depth estimation task. We conduct
additional experiments projecting between various other task representation spaces. These
results indicate that cross-task distillation using linear projection is a promising approach for
leveraging shared information between specific pairs of tasks, and further motivate our work.

6.9 Training Dynamics of the Inverted Projector

By observing the singular value spectrum of the projector weights and how they evolve over
the course of training, we are able to provide further insight into the role of our novel inverted
projection for cross-task distillation, as compared to the traditional projection. Figure 4 shows
the singular value spectrum of the projector weights throughout the training process of a
segmentation student with both similar and different teacher tasks, using either the traditional
projection or our novel inverted projection. It can be seen that the traditional projection fails
to disregard many of the less-dominant singular values, leading to a higher-rank projection in
general. As discussed in section 3.2, this is especially detrimental when there is a significant
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Figure 5: Comparing performance of different-sized depth students with both the tradi-
tional projection and our novel inverted projection. Where there is knowledge to transfer
from teacher to student (i.e. the two tasks are similar), the traditional projection performs
better, but when the teacher is random, the opposite is true. Only decoder size is varied. A
MobileNetV2 [24] is used as the backbone.

task gap, as it encourages the student to learn task-irrelevant features. When the student model
is small, this can significantly degrade the target task performance. However, when using
our inverted projection, we observe a consistently lower rank across training for all tasks,
compared to the traditional projection. This is because of the inverted projection’s ability to
suppress the task-irrelevant singular vectors from the teacher model: while the traditional
projection remains consistently high-rank regardless of the dissimilarity of the student and
teacher tasks, our inverted projection is able to adapt to discard the increasing quantity of
undesirable task-specific knowledge encoded in the increasingly dissimilar teacher features.

6.10 Different architecture pairs

To demonstrate the generality of our proposed inverted projection in various cross-task
settings, we perform an ablation across several differently-sized student models with similar
and dissimilar task pairs. Figure 5 shows that the performance drop or improvement is
consistent for both the very small and moderately large student models, across different task
pairs. It also mirrors the findings of our previous experiments in sections 4.2, 4.3, and 4.4,
showing that the similarity of the teacher and student tasks matters, and that our novel inverted
projection performs best when the two tasks are dissimilar.

Table 8 shows results distilling from a classification teacher to a depth student using two
student backbones of significantly-different sizes: an EfficientNet-BO (5.3M params) and a
ResNet-50 (25.6M params). These students are chosen to illustrate both a small and a large
capacity gap between the student and teacher models. Three different KD methods are used.
Our inverted projector outperforms the traditional projector across all metrics for all three KD
methods and both student backbone architectures in this cross-task setting, thus demonstrating
the generality of our inverted projector for a variety of practical KD settings.

6.11 Teacher-Free Distillation: Results

Table 9 shows the performance of the teacher-free distillation strategy detailed in section 4.5
using different ranks, when applied to a depth estimation setup. A higher value of » uses more
of the available principal components to reconstruct the features. The optimal value is found
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Student Arch (backbone) — EfficientNet-BO (5.3M) ResNet-50 (25.6M)
KD Method Projection type 8 1 Abs. | RMS | & 1 Abs. | RMS |
None (baseline) N/A | 0.845 0.127 0440 | 0.811 0.144 0.480
AT [82] Original 0.850 0.125 0.433 0.814 0.143 0.477
Inverted (ours) 0.853 0.123 0.430 0.816 0.143 0.475
Improvement 0.35% 1.61% 0.79% 0.26% 0.14% 0.38%
PKT [55] Original 0.851 0.124 0.432 0.816 0.143 0.473
Inverted (ours) 0.853 0.123 0.431 0.821 0.141 0.470
Improvement 0.25% 1.29% 0.30% 0.63% 1.19% 0.70%
FitNets [64] Original 0.845 0.125 0.439 0.812 0.145 0.480
Inverted (ours) 0.850 0.124 0.434 0.813 0.142 0.476
Improvement 0.50% 0.53% 1.34% 0.16% 1.93% 0.77%

Table 8: Comparisons with different architecture pairs. All experiments perform cross-
task distillation from a classification teacher to a depth estimation student. The inverted
projection is effective across various student model sizes and with different KD methods in
this cross-task setting.

Method RMS | Abs| o 1
(Baseline) AiT (SwinV2-B) [54] 0.365 0.105 0.907
['_ypectml (}”: 1) 0.352 0.105 0.902
Lspec{ml (}’: 2) 0.340 0.096 0.914
Lipectral (r="4) 0.349 0.099 00911
Lspecrml (r: 8) 0.344 0.096 0.910
Lpeciral (r=16) 0.348 0.098  0.912
Lspectral (r = 32) 0347 0.100  0.909

Table 9: Teacher-free distillation using our spectral regularisation loss on the NYUv2 dataset
using AiT [54] on a SwinV2-b base. The regularisation loss is generally robust to different
values of r, with r = 2 being optimal.

to be when r = 2.

6.12 Choice of CycleGAN representation

In the encoder-decoder setup, there is a natural choice for the representation to be used as the
distillation loss: the representation at the output of the encoder. However, when dealing with
different architectures, the decision is less obvious and can significantly impact the efficacy
of the distillation process itself. The CycleGAN architecture consists of a discriminator and
two separate encoder-decoder models (generators), which we denote here as G4 (-) and Gp(+).
The first of these, G4 (-), attempts to generate an image from the input x that will fool the
discriminator, and the second, G(-), maps the output of G4 (-) back to the source domain.

Both G4(-) and Gg(-) are encoder-decoders, and we represent the intermediate features
as Ga, (-) and Gp, (-) for each respectively. We trialled the use of each set of features, the
results of which are shown in table 10, and found a significant improvement when using the
representation from the generator that maps back to the source domain: Z; = G, (Ga(x)).
Therefore, the features from the second generator Gp(-) are those used for feature distillation
in our main CycleGAN experiments.
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Teacher Task ~ Position PSNR 1 FID |

KeyPoint Det.  Z; = Gp, (Ga(x)) 35.77 68.77
KeyPoint Det.  Z; = G, (x) 34.97 70.28
(Ga(x

Image Classif. Z; = Gp,(Ga(x)) 36.28 59.86
Image Classif. Z; = Ga,(x) 35.94 66.98

Table 10: Choice of representation for the distillation loss: either using features from the
first generator G4 (+) that generates the synthetic image, or using features from the second
generator Gg(-) that maps the synthetic image back to the input domain.

6.13 Analysis of Feature Distillation Loss

This section describes the full analysis of the loss function L ;;; detailed in section 3.4 that
leads to it breaking into the knowledge transfer component and the regularisation component
in equation 5.

6.14 Setup and Definitions

We begin by describing our setup. A teacher model, T, and a student model, S, both take
an identical input to produce the teacher and student features, Z; € R?*% and Z; € R?*%
respectively, where d; and dj are the sizes of the feature dimensions for the teacher and student
models respectively, and b is the batch size. We also define the inverted projection matrix
between the teacher and student feature spaces P. The corresponding projected features would
be given by Z, = Z,P € R?*%_ The rank r for each of these is bounded by:

rs = Rank(Zy) < min(b,dy) 3
r; = Rank(Z,) < min(b,d,) ©
rp = Rank(P) < min(d,,d;) (10)
F; = Rank(Z,P) < min(r;,r,) (11)

< min(min(b,d;), min(d;,d;)), (12)

with the latter being due to the fact that Rank(AB) < min(Rank(A),Rank(B)).

6.15 Understanding the Inverted Projection

We demonstrate using our inverted projection. The feature distillation loss function is given
by:
Laiseint = |Ze — Zs|» = ||Z,P — Zs|| 13)
Taking the singular value decomposition of each of these gives Z, = ULV’ and Z; =
UZV’. Using the rank definitions mentioned previously, we can express these as sums of
products of the singular values and their corresponding singular vectors, i.e.

Zl =7Z,P= Z 6;0;V; (14)

s
Z,=)Y ouyv; (15)
i=1
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where 6 € IR” and ¢ € IR”s denote the columns of £ and X respectively, @ € IR”*" and
u € IR?*’s the columns of U and U, and ¥ € IR %% and v € IR"**% the columns of V and V.
The feature distillation loss can be rewritten as:

Laisiitt = |12 — Z||» (16)

Tt Is
= H Z o;u;V; — Z G,'ll,'V,'HQ 1. Same-task 17
i=1 i=1

knowledge transfer only

The rank of the inverted projection matrix dictates how the upper bound on the loss can
be decomposed into a knowledge transfer component and a regularisation component. We
empirically find that P works out to be lower-rank in the cross-task setting (see section 6.9),
and so r; > ;. This observation allows us to merge the sum in equation 17 such that every
one of the 7; projected teacher singular values is compared to a student singular value, with
the remaining ry — 7, student singular values forming the regularisation term:

It

s
Laiseinr = | Y (609 —ouvi)+ Y, ouivill>

i=1 i=F+1
7y Iy -
< HZ 6iﬁiViT - GiuiV,‘TH2+ | Z G,'ll,'V,I [I2 2. Cross-task (18)
i=1 i=r+1
knowledge transfer student regularisation

This shows that, under the cross-task setting, the feature distillation contains both a knowl-
edge transfer component (which incorporates information from the teacher model) and a
regularisation component (which acts upon the student model).
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