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Abstract
Traditional knowledge distillation (KD) relies on a proficient teacher trained on the

target task, which is not always available. In this setting, cross-task distillation can be
used, enabling the use of any teacher model trained on a different task. However, many
KD methods prove ineffective when applied to this cross-task setting. To address this
limitation, we propose a simple modification: the use of an inverted projection. We show
that this drop-in replacement for a standard projector is effective by learning to disregard
any task-specific features which might degrade the student’s performance. We find that
this simple modification is sufficient for extending many KD methods to the cross-task
setting, where the teacher and student tasks can be very different. In doing so, we obtain
up to a 1.9% improvement in the cross-task setting compared to the traditional projection,
at no additional cost. Our method can obtain significant performance improvements (up
to 7%) when using even a randomly-initialised teacher on various tasks such as depth
estimation, image translation, and semantic segmentation, despite the lack of any learned
knowledge to transfer. To provide conceptual and analytical insights into this result, we
show that using an inverted projection allows the distillation loss to be decomposed into
a knowledge transfer and a spectral regularisation component. Through this analysis
we are additionally able to propose a novel regularisation loss that allows teacher-free
distillation, enabling performance improvements of up to 2.3% on ImageNet with no
additional training costs.

1 Introduction
Knowledge distillation (KD) has emerged as a very effective tool for training small and
efficient models [5, 17, 37, 40, 43, 60]. It leverages the pre-trained knowledge of a much
larger (teacher) model to guide and enhance the training process of a significantly smaller
(student) model. Since its inception, KD has been applied to a wide variety of tasks in the
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(a) Traditional same-task knowledge distillation that
projects to the teacher feature space.
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(b) Cross-task knowledge distillation using our in-
verted projection.

Figure 1: Our cross-task knowledge distillation pipeline, where a student model is trained
on a target task with the aid of a frozen teacher that is pretrained on a different task. Compared
to standard same-task feature distillation (fig. 1(a)), our cross-task approach uses an inverted
projector (fig. 1(b)) which is able to discard irrelevant task-specific features from the different-
task teacher. The loss comprises a feature distillation loss Ldistill that matches the student
features with the projected teacher features, and a task-specific supervised loss Ltask applied
only to the student model’s output for the target task.

computer vision [7], audio [11] and language [56] domains, enabling the deployment of
models across many embedded devices.

However, existing approaches for KD are often limited to the cases where the teacher
shares the same task with the student [6, 7, 8, 23, 25, 60]. This is very restrictive since there
are many applications where there is simply no suitable pretrained teacher available due to,
for example, the lack of any large annotated training data. This problem commonly arises
for tasks that require expensive human annotation [39], such as in robotics [26], or where the
collection of data is prohibitive for other reasons, such as in the medical [31, 55] and aerial
domains [19, 29, 63]. In these cases, it is not possible to train a suitable teacher for the target
task, therefore we propose a cross-task knowledge distillation. In the cross-task KD setup, a
teacher model trained for a different task can be used to improve the student performance.
This setting is well-suited for tasks lacking a task-specific pretrained teacher, as it allows for
any other off-the-shelf pretrained model to be used to improve the student model performance
instead. It is also increasingly relevant as the compute and data costs to train large models
increases. Similarly, data labelling may be cheaper for one task than another, e.g. training a
model using a cheaply-labelled auxiliary task is very common in active learning [4, 21, 24]
and federated learning [1].

We show that the traditional methods for same-task KD fail in this new and more general
cross-task setting since they transfer domain-specific knowledge, which is associated with
the teacher’s task. Therefore, while they increase the student’s performance in the traditional
same-task setting, they degrade it in the cross-task scenario. We propose the use of an inverted
projection to address this problem. We find that this modification is very effective in the
cross-task setting due to its suppression of task-specific information. Most notably, we can
obtain up to a 7.47% performance improvement by distilling from a teacher trained on various
different tasks. We demonstrate that this simple drop-in replacement enables many KD
methods to adapt to the cross-task setting, and we show consistent improvements across
various tasks including depth estimation, segmentation, and image translation.
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To obtain more insights into the underlying mechanism of the inverted projector, we
explore the training dynamics of its weights. We find that the least-significant singular
vectors of the teacher’s features are suppressed in cases where there is a significant task
gap, which indicates that these singular vectors tend to be more task-specific. Based on this
observation we show that the suppression of singular vectors by the projector naturally leads
to a decoupling of the distillation loss into a knowledge transfer and spectral regularisation
component. This enables us to derive a cheap spectral regularisation loss. We describe this
loss as a teacher-free distillation method since it explicitly exploits the emergent regularisation
component from cross-task distillation. The new loss makes it possible to efficiently achieve
performance competitive with many state-of-the-art KD methods without the need for any pre-
trained teachers, with a 3.2% relative improvement over the baseline model on ImageNet-1K.
In summary, our contributions are given as follows:

• We propose a simple modification to standard KD that enables cross-task distillation: a
learnable inverted projection.

• We show consistent and substantial performance improvements in the cross-task setting
of up to 7% through extensive experiments.

• By analysing the training dynamics of the projector weights, we are able to decouple
a knowledge transfer and spectral regularisation component. We use this to derive a
teacher-free regularisation loss that obtains up to 8% improvement over the baseline
with no additional training cost.

2 Related Work
Knowledge distillation (KD) is a technique that involves transferring the knowledge from a
large teacher model to a smaller student model, aiming to improve the performance of the
student on the target task. It has become increasingly popular in recent years for the deploy-
ment of models on resource constrained devices, such as mobile phones, and has been applied
in image classification [6, 23], semantic segmentation [35], video object segmentation [43],
and natural language processing [57]. Existing literature has extensively explored various
distillation pipelines [32, 38, 52] along with both empirical and theoretically motivated loss
formulations [6, 23, 42, 72] that can facilitate the knowledge transfer process. However, these
conventional methods still predominantly focus on same-task distillation [7, 60], wherein the
student and teacher models are trained on the same task. There are many applications where
there are no pre-trained off-the-shelf teacher models available, thus motivating the need to
perform cross-task distillation. Some prior works have pursued cross-task distillation both
as a generalisation of the knowledge transfer occurring in traditional knowledge distillation
[67] and because of the observation that some tasks will naturally tend to share informa-
tion [65, 69]. CrossDistil [65] was one of the first to partially explore this new setting by
introducing a quadruplet loss, calibration term, and an error correction mechanism, however
knowledge was distilled between the task-specific decoder heads of a multi-task model with
shared encoder weights, rather than between two fully-separate models. ProC-KD [33] trans-
fer local-level object knowledge for large-scale cross-task distillation, while [67] construct
a relational embedding for the loss. [69] perform cross-task KD to augment text-to-image
generation using image semantic encoders, but the proposed method is tightly coupled with
the model architecture at each stage of the pipeline. In contrast to these works, we propose a
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very simple extension to the typical feature distillation pipeline that enables the distillation of
knowledge cross-task across a wide range of settings.
Transfer learning and domain adaptation are widely studied areas in machine learning that
leverage the knowledge acquired by a pretrained model on one task to enhance the performance
on a different, yet related task [73]. This paradigm has demonstrated significant success in
various fields, especially in computer vision [16, 71] and natural language processing [50, 59],
by reducing the training time and data requirements in the target domain. Most existing
transfer learning or domain adaptation algorithms attempt to align the feature representations
across the two domains. This can be achieved by minimising some statistical discrepancy
between the two spaces [22] or introducing additional adversarial losses [14]. More recent
works [10] have shown a spectral divide between the domain-specific and domain-agnostic
features. This is where the large singular values of the features can generalise across domains,
whereas the small singular values are domain-specific. This observation has led to follow-up
works [9, 10, 47] by proposing spectral alignment and normalisation techniques. We take a
similar approach for transferring knowledge between different tasks, but in the context of
knowledge distillation, where an additional capacity gap between the source and target task
models exists. This work also enables a more concrete bridge between the field of transfer
learning and knowledge distillation.
Multi-task learning. There are many cases where jointly training on multiple tasks or modal-
ities can improve not only the generality of models [48] but also the single-task performance.
For example, monocular depth estimation has been shown to share knowledge with other tasks,
such as semantic segmentation [2, 3, 27, 30, 51, 62, 64]. Intuitively, this follows for other
task pairs; for instance, both semantic segmentation and classification target the semantics
within an image. Unfortunately, multitask models are often too large and expensive to run on
resource-constrained devices [28]. Additionally, jointly learning multiple tasks with a small
model can degrade the downstream performance, as additional tasks or objectives can conflict
with the target task when there is insufficient capacity in the student to optimise for both [18].

3 Method

3.1 Cross-task Feature Distillation

Cross-task distillation is motivated by the intuitive and demonstrated overlap in useful infor-
mation between different tasks (see section 2). We use feature-space distillation, which aims
to align the feature spaces of a student model and a teacher model. To do this, a learnable
projection is used to map the features from one model into the feature space of the other.
However, in the cross-task case, where the teacher model has been trained for a significantly
different task to the student model’s target task, there are specific issues to contend with
that traditional KD methods do not address. We introduce a novel inverted projection that is
well-suited to the cross-task setting, in contrast to the traditional projection [54, 60] which is
better suited to the same-task setting.

3.2 Importance of Feature Projection

In the traditional same-task setting, the teacher model is already pre-trained for the student’s
target task, so it is desirable for the student to match features as closely as possible with those
produced by the teacher. In this case, the task-specific knowledge is helpful in improving the
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Teacher task −→ ■ Depth ■ Instance Seg. ■ Classification ■ Random
KD Method Projection type δ1 ↑ Abs. ↓ RMS ↓ δ1 ↑ Abs. ↓ RMS ↓ δ1 ↑ Abs. ↓ RMS ↓ δ1 ↑ Abs. ↓ RMS ↓

No teacher (baseline) 0.845
±0.007

0.127
±0.003

0.440
±0.005

0.845
±0.007

0.127
±0.003

0.440
±0.005

0.845
±0.007

0.127
±0.003

0.440
±0.005

0.845
±0.007

0.127
±0.003

0.440
±0.005

FitNets [54]
ICLR 2015

Traditional 0.868 0.117 0.406 0.855 0.122 0.425 0.845 0.125 0.439 0.828 0.134 0.455
Inverted (ours) 0.849 0.124 0.432 0.851 0.124 0.431 0.850 0.124 0.434 0.851 0.124 0.431
Improvement -2.17% -6.35% -6.49% -0.41% -1.78% -1.31% 0.50% 0.53% 1.34% 2.86% 7.47% 5.20%

AT [70]
ICLR 2017

Traditional 0.856 0.122 0.426 0.852 0.123 0.431 0.850 0.125 0.433 0.857 0.121 0.428
Inverted (ours) 0.856 0.122 0.425 0.855 0.121 0.429 0.853 0.123 0.430 0.857 0.122 0.428
Improvement -0.11% -0.08% 0.02% 0.42% 1.38% 0.53% 0.35% 1.61% 0.79% 0.05% -0.83% 0.09%

PKT [46]
ECCV 2018

Traditional 0.854 0.122 0.429 0.857 0.123 0.427 0.851 0.124 0.432 0.856 0.123 0.429
Inverted (ours) 0.854 0.122 0.427 0.854 0.123 0.429 0.853 0.123 0.431 0.858 0.122 0.426
Improvement 0.04% -0.16% 0.42% -0.34% -0.08% -0.44% 0.25% 1.29% 0.30% 0.29% 1.22% 0.84%

Ensemble [12]
NeurIPS 2022

Traditional 0.861 0.119 0.416 0.856 0.122 0.425 0.852 0.124 0.431 0.835 0.128 0.446
Inverted (ours) 0.849 0.124 0.433 0.848 0.124 0.435 0.847 0.125 0.437 0.849 0.124 0.432
Improvement -1.46% -4.64% -4.11% -0.95% -1.64% -2.16% -0.63% -0.89% -1.30% 1.74% 2.75% 3.03%

Table 1: Cross-task distillation to a depth estimation student model using similar (■)
and dissimilar (■) teacher tasks, showing the increasing effect of our inverted projection
as similarity between teacher and student tasks decreases. We use our inverted projector
with four different KD methods to show its general applicability. The inverted projector
outperforms traditional projections in the cross-task case for which it is designed, but always
produces a performance improvement over the baseline (no distillation) regardless of the
teacher task. ■ ■ ■ ■ colour map denotes decreasing student-teacher task similarity.

student performance. However, for the cross-task setting, the teacher is trained on a different
task to the student. As detailed in section 2, there is likely at least some shared knowledge
between different tasks. The issue in the cross-task knowledge distillation setting is how to
extract only the task-agnostic knowledge and the knowledge shared between tasks, all while
ignoring the irrelevant features produced by teacher. This last point is especially important
for smaller student models as they do not have the capacity to effectively learn the union of
two very different feature spaces. A projection layer is often used in knowledge distillation to
match the student’s feature dimensions with those of the teacher [54, 60]. Although recent
works have highlighted the importance of the projector in improving the efficacy of same-task
distillation [12, 41, 44], they have proven ineffective when there is cross-task information
present. We propose a modification of the projection in which we instead map from the
teacher space onto the student space. We describe this as inverting the projector, and we find
that it enables the suppression of irrelevant (task-specific) features. We show that this inverted
projector can effectively discard these irrelevant features if needed. If this were to be used in
the traditional same-task setting, the discarding of these features would be detrimental, but in
the cross-task setting, it is actively desirable.

3.3 Setup and Training loss

Our cross-task knowledge distillation pipeline is shown in figure 1(b). It consists of a trainable
student model, which is to be trained on a given target task, and a frozen teacher model,
which is pre-trained on a different task. This setup is in contrast to the traditional same-task
knowledge distillation setting, which is shown in figure 1(a). Both the student and teacher
models receive the same input image, and their respective encoders produce features Zs and
Zt respectively. A learnable linear projection matrix P is used to project Zt to the dimensions
of Zs, giving Z̄t = ZtP. A distance function d is then used between the student features and
the projected teacher features:

Ldistill = d(Zs,ZtP), (1)
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where d can be any distance metric, such as the L2 loss used by FitNets [54] or the attention
mapping described by AT [32]. In addition to this loss, we also use a task-specific supervision
loss between the student model’s output ys and the ground truth labels y to ensure the student’s
output aligns with the target task. Since the teacher’s output is not used, we only perform a
forward pass through its encoder in order to reduce the training compute required. The final
loss is given by:

Ltotal = Ltask(ys,y)+Ldistill(Z̄t ,Zs), (2)

where Ltask is the downstream target-task loss. For example, for depth estimation it will
be a pixel-wise loss with the ground truth depth, and for image classification it will be a cross
entropy term.

3.4 Decoupled Feature Distillation
To obtain analytical insights into the consequences of projecting the teacher features, we take
the case where Ldistill is a simple L2 loss between the student’s features Zs and the projected
teacher features Z̄t . We perform singular value decomposition on both, i.e. Z̄t = ŪΣ̄ΣΣV̄T and
Zs = UΣΣΣVT . The cross-task setting requires that our inverted projection learns to discard the
irrelevant task-specific features from the teacher model. This can be implemented using a
low-rank projection of the features. However, we observe that a low-rank projection naturally
emerges in the cross-task setting when using our inverted projector. In fact, this emergence is
even more prominent when there is a significant task gap (see section 4). Using this low-rank
property, we can express Z̄t using a truncated SVD, i.e. keeping few non-zero singular values.
Substituting this into our Ldistill with an L2 loss, we can then decouple an upper bound into a
knowledge transfer and a spectral regularisation component1:

Ldistill = d(Zs,ZtP)→∥Zs −ZtP∥2 e.g. FitNet loss (3)

= ∥∑
i∈k

(σ̄iūiv̄T
i −σiuivT

i )+∑
i/∈k

σiuivT
i ∥2 Low-rank projection (4)

≤ ∥∑
i∈k

σ̄iūiv̄T
i −σiuivT

i ∥2︸ ︷︷ ︸
knowledge transfer

+∥∑
i/∈k

σiuivT
i ∥2︸ ︷︷ ︸

regularisation

, Decoupled upper bound (5)

where k denotes the set of indices indexing the non-zero singular values of Z̄t . In practice,
any metric d that satisfies the triangle inequality has this decoupled upper bound in the
cross-task setting. This result shows that the distillation loss can be decomposed into a
knowledge transfer and an implicit spectral regularisation component. It explains how the
inverted projection can help to improve performance even when there is little or no knowledge
to transfer from the teacher: through a low-rank regularisation on the feature space. We
empirically observe this emergent decoupling in figure 3. Here we see that an inverted
projected is more effective at removing irrelevant task information, which is important in the
cross-task KD setting.

3.5 Teacher-Free Distillation
The decoupled feature distillation in equation 5 allows us to introduce a novel spectral
regularisation loss Lspectral . This loss captures the regularisation effect of the cross-task
distillation process without the use of any teacher, therefore we call this method "teacher-free

1For full details, please see the supplementary material.
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Teacher Task IoU ↑ Pix. Acc. ↑

No teacher 34.60 ± 0.36 0.759 ± 0.001

Random 37.20 0.768
Classif. 36.00 0.766
Seg. 36.50 0.767

Semantic segmentation

Teacher Task PSNR ↑ FID ↓

No teacher 20.48 ± 0.04 65.77 ± 1.21

Random 20.99 63.23
Seg. 21.10 63.44
Classif 21.27 65.92
Depth 20.84 62.60

Colourisation

Teacher Task PSNR ↑ FID ↓

No teacher 35.29 ± 0.18 67.43 ± 1.70

Random 35.28 72.54
Classif 36.29 59.86

Satellite-to-map conversion

Table 2: Comparison for different cross-task settings. We observe that our inverted
projector is effective across many different task pairs and even for the same-task settings.

distillation" as is similarly done in other works [68]. Its objective is to minimise the least-
significant singular vectors of the student model’s features while keeping the most-significant.
We define the spectral regularisation loss as follows. Assuming that the singular values/vectors
are sorted from most to least significant, the loss can be given as follows:

Lspectral = ∥
rank

∑
i=r

σiuivT
i ∥2, (6)

where r is a hyperparameter expressing the strength of the regularisation loss and rank is
the rank of the student features. More concretely, this hyperparameter defines the number
of singular values being preserved. A smaller r will result in more singular values being
suppressed, thus leading to a more aggressive regularisation of the feature space. In general,
this loss effectively penalises the reconstruction of features by the least significant singular
values. It suppresses the features that are overly task-specific, thus forcing the representation
into a lower rank space, which leads to better generalisation. We perform experiments using
this loss in section 4.5.

4 Experiments and Results
To validate the efficacy of our inverted projector in the cross-task setting, we perform ex-
periments ablating across different distillation methods, task pairs, and architectures. We
experiment with four target tasks: monocular depth estimation, semantic segmentation, image
colourisation, and satellite-to-map translation. For each of these student tasks, teacher tasks
are chosen that are either identical, similar, or different to them, thus demonstrating that our
method is best-suited for the cross-task case where there are significant differences in the task
specific knowledge learned by the teacher and student models.
Randomly-initialised teachers. An interesting question arises when we consider increasingly
disparate student and teacher tasks: what happens if a randomly-initialised teacher is used?
In this case, there is no knowledge shared between the teacher’s task and the target task,
however the random weights in the teacher may still produce diverse features. To investigate
this question, we also distill from randomly initialised teacher models in our experiments.

4.1 Implementation details
The general framework used is described in section 3, and shown in figure 1(b). The model
architectures used for the student and teacher vary depending on the task pairs. As an example,
our depth estimation student is an encoder-decoder architecture with either a MobileNetV2,
ResNet50, or EfficientNet-B0 backbone, and the frozen teacher model is a ViT-B/32 [15]
trained for classification or the SwinV2-B [36] backbone of AiT [45] pretrained for instance
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(a) Input (b) Ground Truth (c) Depth Teacher (d) Insseg Teacher (e) Random Teacher

Figure 2: Qualitative results on NYUv2 (depth) using different teacher tasks: results
from depth estimation, instance segmentation, and randomly-initialised teachers to a Mo-
bileNetV2 [20] student. In each case, we use the optimal projection type for the teacher task.

segmentation. All architectures used follow an encoder-decoder structure. The student and
teacher features, Zs and Zt , are extracted immediately after the encoder of the model in
question. All decoders used require features with a spatial (height and width) dimension,
therefore if the teacher model’s encoder has a final pooling layer (as in the case of the
classification teacher), this is removed.

4.2 Monocular depth estimation
Monocular depth estimation is the task of inferring the depth, or distance to the camera,
of every point shown in a single image. It is a challenging problem, as there is a many-to-
one mapping from 3D scenes to a given 2D depth-image. When experimenting with depth
estimation as a target task, we make use of teachers trained on tasks that range from similar to
dissimilar to the target task of depth estimation, in terms of the overlap in knowledge. We use
a depth teacher for the same-task distillation, and the instance segmentation and classification
tasks for the increasingly dissimilar teacher tasks. Finally, we use a randomly initialised and
frozen teacher for the most extreme cross-task setting. Experiments are run on the NYUv2
dataset [58]. Our results are shown in table 1. As expected (see section 3), the use of our
inverted projection produces improvements in performance when using dissimilar teacher
tasks (random and classification), and gives similar or worse performance when the teacher’s
task is similar to the target (instance segmentation and depth estimation teachers).

We use four different feature distillation methods from the same-task literature to show
the utility of our method as a drop-in for use in the cross-task setting: FitNets [53], Attention
Transfer (AT) [70], Probabilistic Knowledge Transfer (PKT) [46], and Ensemble (the projector
ensemble method of [12]). The cross-task improvement using the inverted projection is most
pronounced with FitNets and Ensemble, but there is some improvement with AT and PKT.

4.3 Semantic segmentation
Semantic segmentation is the task of labelling every pixel in the input image with a class.
Our experiments are performed using MSCOCO [34], an 80-class segmentation dataset.
We validate the effectiveness of our inverted projector using segmentation, classification,
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(d) ■ Seg. → Seg. (e) ■ Class. → Seg. (f) ■ Random → Seg.

Figure 3: Evolution of singular values of the projection matrix P under different cross-task
settings and projector types. Green area highlights the rank of P. The projection tends
towards a higher rank either when using the traditional projection or when using the same
or similar-task teacher. The low-rank when using our inverted projection in the cross-task
setting allows irrelevant features to be filtered out, if necessary for the task pair. Top row:
traditional projection, Bottom row: our inverted projection.

or randomly initialised teachers. In all experiments, we use a simple L2 loss between
the projected teacher features and the student features. Results shown in table 2. We
are able to obtain significant improvement with all the teacher tasks considered, with the
best improvements seen with the random teacher. This follows: both classification and
semantic segmentation have significant overlap in knowledge, but the random teacher has
significant task-irrelevant information that our inverted projection is able to discard. This
further empirically validates the regularisation components described in equation 5.

4.4 Image-to-image translation

We experiment with two image-to-image translation tasks: transforming satellite images into
maps, and colourisation of black-and-white images. These two student tasks are particularly
important, as they do not have significant knowledge overlap with any of the teacher tasks
used: classification, depth estimation, instance segmentation, and the randomly-initialised
teacher. In contrast, segmentation and classification share a common goal of understanding
semantic context of the world, while depth estimation and segmentation have been shown to
aid one another (see section 2). Results are shown in table 2. Given the relative dissimilarity of
the student tasks with all teacher tasks, unsurprisingly, our inverted projection performs well
in all cases. We are able to use our inverted projection to produce a significant improvement
over the baseline with all teacher tasks, including with the randomly initialised teacher.
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Network acc@1 #params

RegNety 160 [49] 82.6 84M

Methods using a pre-trained teacher
DeiT-Ti⚗ [61] 74.5 6M
Co-advise [52] 74.9 6M
DearKD [8] 74.8 6M
USKD [66] 75.0 6M

Methods without any teacher
DeiT-Ti [61] 72.2 5M
Ours: Lspectral(r = 8) 74.5 5M

Table 3: Comparing our novel teacher-free spectral regularisation loss to other state-of-
the-art KD methods on ImageNet-1K [13]. Top row is the teacher model used by the KD
methods that use a teacher. All methods use a DeiT-Ti [61] student model, with DeiT-Ti⚗
describing the distilled variant using distillation tokens.

4.5 Teacher-free distillation.
As shown in sections 4.2, 4.3, and 4.4, we are able to obtain significant performance im-
provements even when the teacher is randomly initialised and then frozen, thus containing
no task-specific knowledge at all. This reinforces the conclusion reached in section 3.4: the
distillation loss function Ldistill may be comprised of a knowledge transfer component and
a spectral regularisation component. In the case where there is no knowledge to transfer
between the teacher and the student, only a regularising effect can explain the performance
improvement over the baseline. To control for this, and to provide further evidence of the loss
decoupling described in equation 5, we perform experiments using the spectral regularisation
loss (equation 6). Experimenting with different r values in a depth estimation model trained
on NYUv2 [58] without a teacher, we find that spectral regularisation significantly enhances
performance across all r values, particularly at r = 2 (see appendix). This supports the
decoupling of Ldistill into knowledge transfer and regularisation terms (equation 5) and further
validates using a randomly-initialised teacher. In table 3 we consider knowledge distillation
on the large-scale ImageNet-1K dataset, and we observe that our simple regularisation loss
achieves competitive performance with many state-of-the-art knowledge distillation methods.

5 Conclusion
In this paper we propose the inverted projector as a simple drop-in component for extending
many knowledge distillation (KD) methods into cross-task settings, where the teacher’s
task differs from the student’s. This inverted projector is able to suppress the irrelevant
task-specific features from the teacher, which greatly improves the efficacy of cross-task
distillation. We show consistent and substantial improvements across a number of cross-
task pairs using our approach. Most notably, we achieve up to a 7.47% improvement for
depth estimation by distilling across a significant task-gap. Through analysis, we provide a
concrete interpretation and explanation for our results, leading to a natural decoupling of the
objective into a knowledge transfer and a spectral regularisation component, and we extend
this to demonstrate a novel drop-in teacher-free loss that achieves some of the benefits of
knowledge distillation without the use of a teacher. In this work we have highlighted some of
the limitations of KD in the cross-task setting, while also providing a step towards broadening
its practical applicability in this new domain.
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