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Abstract

Multi-modal Large Language Models (MLLMs) have demonstrated remarkable ca-
pabilities in understanding and generating content across various modalities, such as
images and text. However, their interpretability remains a challenge, hindering their
adoption in critical applications. This research proposes a novel approach to enhance the
interpretability of MLLMs by focusing on the image embedding component. We com-
bine an open-world localization model with a MLLM, thus creating a new architecture
able to simultaneously produce text and object localization outputs from the same vision
embedding. The proposed architecture greatly promotes interpretability, enabling us to
design a novel saliency map to explain any output token, to identify model hallucinations,
and to assess model biases through semantic adversarial perturbations.

1 Introduction
Since the advent of Chat-GPT, a large language model (LLM) revolution has taken the Ma-
chine Learning (ML) community by storm. More recently, Multi-modal Large Language
Models (MLLMs), able to reason on inputs composed of both images and text [27], have
shown even more impressive results on many Computer Vision (CV) problems. MLLMs
such as Flamingo [2], LLaVa [16], and GPT-4 [19] are now able to solve a plethora of lan-
guage and vision tasks with a level of accuracy that was unthinkable just a few years ago.

Consequently, the research community has focused on improving the performance of
MLLMs, rather than assessing their interpretability or developing explanations. Indeed, the
most popular techniques to explain vision transformers, Attention Visualization [6] and At-
tention Rollout [1], predate the introduction of MLLMs by years. This issue is further mag-
nified by the predisposition of MLLMs towards biases [18] and hallucinations [11].

These aspects highlight the urgent need for MLLM explanations. To tackle this is-
sue, we present a joint open-world localization (OWL-ViT [17]) and MLLM (LLaVa [16])
model (Figure 1), allowing for simultaneous extraction of text (OMLLM) and bounding boxes
(OOWL) from the same vision embedding tOWL

i . In the proposed architecture, the detection
output acts as a compact representation of how the MLLM interprets the image’s semantics,
displaying the objects that are perceived in the image. We exploit this property to detect and
visualize model hallucinations. Moreover, by analyzing the gradients of OMLLM and OOWL

with respect to the embedding tOWL
i , we develop a novel saliency map to explain the outputs
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Figure 1: Overview of the proposed architecture and its uses for interpretability.

of the MLLM. Lastly, enabled by the tight link between the two outputs, we design adversar-
ial perturbations to OOWL that reflect a semantic change to the shared embedding tOWL

i and
thus to OMLLM , and exploit these perturbations to assess and measure MLLM biases.

To the best of our knowledge, our work is the first to enable explanations for the Vision
Transformer (ViT) component of a MLLM. Indeed, previous explanations for ViTs [1, 25]
are only able to explain the model’s attention in relation to a training class, and cannot
be applied to arbitrary token outputs of a downstream LLM. Also, differently from image-
grounding frameworks [13, 22] which utilize external vision decoders, our proposed explana-
tions are computed solely from the MLLM’s vision representation, thus ensuring that they are
faithful to the model’s perception. Furthermore, we are the first to employ adversarial pertur-
bations to the purposes of explaining a MLLM, as previous literature on the subject primarily
focuses on deceiving models or defending from attacks [4]. We validate our saliency map by
means of a user study, demonstrating that the proposed explanation identifies regions in the
image that are relevant to the explained token. Moreover, we demonstrate that the very recent
MLLM employed in this work [16] is prone to biases and hallucinations. We make our code
publicly available at https://github.com/loris2222/ExplainingMLLMs.
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Figure 2: Example images that lead to hallucinations. The error is reflected both in the
language output (OMLLM) and in the detection output (OOWL).

Figure 3: Example GA saliency maps for different objects in one MLLM output.

2 Background
We now discuss the foundations of our contributions, specifically regarding open-world lo-
calization (OWL) and multi-modal large language models (MLLMs). We also focus on how
MLLMs can be explained and evaluated with respect to their susceptibility to hallucinations.
2.1 Multi-modal Large Language Models: MLLMs are models that can reason on both
image and text modalities, returning a text output. Formally, given a text prompt p, its tok-
enized version T (p) = t1, . . . , tn, t ∈ Rd , and an image x, a MLLM outputs a logit sequence
l̂1, . . . , l̂n, l ∈ Rdict with the same length as the input, which is then used to predict a token
sequence t̂1, . . . , t̂n. Since the main application of MLLMs is chat-bots, these models are
typically trained for causal language modeling, that is (t̂1, . . . , t̂n)

.
= (t2, . . . , tn+1).

To include vision information in the language model, two main approaches have been
proposed. The first consists in adding cross attention layers between image and text to-
kens [2], while the second relies on treating image tokens as part of the input sequence [16,
19]. In both cases, a transformer network is employed to convert a raster image into a se-
quence of tokens that can be processed by the language model component of the MLLM.
In our work, we focus on MLLMs that treat vision tokens as part of the input sequence. In
particular, we develop explanations for the LLaVa [16] MLLM. While our methods are not
strictly limited to this model alone, we choose LLaVa due to its performance and licensing.
2.2 Open-world Localization: Given an image x and a set of text queries Q = {qi}, open-
world localization (OWL) consists in locating all instances of objects in an image that can
be described by one of the queries in Q. In practice, the output of an OWL model D is a set
of bounding boxes D(x) = {(z,x,y,w,h)i}, identifying i) similarities zi ∈ [0,1]|Q| over the
queries to which the object may refer to, and ii) its spatial location x,y,w,h within the image.
In our work, we employ the OWL-ViT [17] model, which achieves state-of-the-art perfor-
mance in OWL benchmarks and competitive performance in long-tailed object detection.
2.3 Explaining MLLMs: The most popular and established method to explain CV models
is saliency maps. For an image x, a saliency map is a heatmap y, with same size as the input
image, that highlights which region of the image is most relevant for the model’s prediction.
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Saliency maps are typically computed with respect to a particular output, such as a particular
output class ω . For example, the saliency map yω explaining class ω = “dog” will highlight
the part of the image that most contributed to the output unit related to “dog”. For these
reasons, saliency maps are a promising avenue to explain the vision component of a MLLM.

For transformers, Attention Visualization [6] and Attention Rollout [1] are the prominent
methodologies enabling saliency map explanations. These, however, are limited to explain-
ing the output of a ViT classifier for a particular output class, and are not suitable to explain
an output token of a MLLM that is stacked on top of the ViT to be explained, as is the case in
MLLM architectures. In our work, we exploit the proposed joint OWL-MLLM architecture
to enable model explanations with respect to any output token at any position (Figures 1, 3).

In another line of research, efforts have been directed towards grounding the outputs
of MLLMs directly to the image’s pixels. For instance, methods like LISA [13] and Pix-
elLM [22] generate special <seg> tokens within the output stream which can be decoded
into binary masks, thereby enabling the localization of relevant image regions. However,
in these approaches, the segmentation masks are produced by an external module, separate
from the MLLM’s pipeline. This separation implies that the generated explanations may
not necessarily reflect the language model’s internal perception of the image. In contrast,
with our approach, localization is solely derived from the same vision representation that is
processed by the language model (Section 3.3).
2.4 Evaluating MLLM Hallucinations: Attempts have also been made to evaluate the
susceptibility of MLLMs to hallucinations. Specifically, benchmarks such as POPE [14] and
MERLIM [26] introduce datasets and metrics designed to assess the accuracy and reliability
of model outputs. While these are important works towards the development of more robust
MLLMs, they do not allow to visualize what part of the image contributed to the hallucina-
tion. Instead, our proposed methods can provide bounding boxes that identify the regions of
the image that lead the model to erroneous outputs (Section 3.2).

3 Methods
We construct a joint Open-world Localization (OWL) and Multi-modal Large Language
Model (MLLM) architecture J by combining and aligning OWL-ViT’s [17] vision encoder
with LLaVa’s [16] language model. This enables to obtain a MLLM that serves both as
language model and as an object detection model, displaying bounding boxes that enable us
to visualize the model’s understanding of the input image (Figure 1). In turn, this enables
us to develop a saliency methodology to explain any output token (Section 3.3), to detect
hallucinations (Section 3.2), and to design adversarial perturbations to assess and measure
model biases (Section 3.4).
3.1 Combining the Models: Starting from the LLaVa [16] MLLM, our objective is to
construct a model J that, given a multi-modal input, outputs both text and bounding boxes
(Figure 1). As discussed in Sections 3.2 - 3.4, this peculiar output configuration allows J to
be more interpretable than the LLaVa model it is built upon.

To construct such a model, we employ methodologies from OWL-ViT [17], which en-
ables to return detection outputs given the CLIP embedding of an image x. Since LLaVa uses
a CLIP model E I as image encoder, it would be in theory possible to use E I directly to con-
struct J . In practice, however, the CLIP model employed in OWL-ViT is subject to heavy
modifications, meaning that LLaVa’s vision encoder is unsuitable for object detection. Fur-
ther details regarding these limitations are available in the supplementary materials. Instead,
we propose to construct J by aligning OWL-ViT’s vision encoder to LLaVa. Crucially, in
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our design, we ensure that the vision representation is shared across language and detection
outputs, such that perceived image semantics are identical for the two outputs. Thus, the
strong link between the two outputs can be exploited to interpret the model. We now detail
the proposed procedure to build J .

LLaVa [16] employs a pre-trained CLIP [21] vision encoder E I and the LLaMa [24] lan-
guage model. To predict new tokens, the encoding of the image E I(x)= tI

1, . . . , t
I
576 and of the

prompt T (p) = t1, . . . , tn are concatenated and sent to LLaMa. OWL-ViT, instead, is com-
posed of CLIP image and text encoders EOWL that are trained from scratch, on top of which
detection heads H provide an open-world localization output {(z,x,y,w,h)i}, i ∈ 1, . . . ,576
(Section 2.2), amounting to one box for each visual token. During normal operations, the
576 boxes are filtered by thresholding on zi to only display objects present in the image.

To construct J , we replace LLaVa’s vision encoder E I with OWL-ViT’s vision encoder
EOWL, and train a new alignment MLP W to take the output EOWL(x) = tOWL

1 , . . . , tOWL
576 and

transform it into a sequence W (EOWL(x)) = tW
1 , . . . , tW

576 that is compatible with the language
model (Figure 1). LLaMa and OWL-ViT are otherwise kept frozen to retain localization and
language modeling performance. We train W from scratch in a self-supervised manner over
the entire Open Images [12] dataset, minimizing the loss:

L(W,x) = |E I(x)−W (EOWL(x))|2. (1)

We discuss training details in Section 4.1.
Algorithm 1 J pipeline execution
Require: x, p, Q

1: tOWL
1 , . . . , tOWL

576 = EOWL(x) ▷ Embed image with OWL-ViT image encoder
2: tW

i =W (tOWL
i ), i ∈ 1, . . . ,576 ▷ Align embedding using W

3: t1, . . . , tn = T (p) ▷ Encode text with LLaVa’s original text encoder
4: l̂1, . . . , l̂576+n = LLaMa(tW

1 , . . . , tW
576, t1, . . . , tn) ▷ Run LLaMa on the concat. encodings

5: {(z,x,y,w,h)i}=H(Q, tOWL
i ), i ∈ 1, . . . ,576 ▷ Run object detection

6: return OMLLM = l̂576+n, OOWL = {(z,x,y,w,h)i}

In Algorithm 1, we detail the procedure to run J . Given input image x, a list of text
queries Q and prompt p, we first obtain the image’s OWL-ViT embedding (line 1), and
align it to the LLM via our proposed W (line 2). The text is also encoded using LLaVa’s
original module T (line 3). The vision and text tokens are concatenated and fed to LLaMa
(line 4) obtaining one logit vector per input token, the last of which (l̂576+n) is the one of
interest for text generation (OMLLM). We then run object detection with queries Q, obtaining
output OOWL = {(z,x,y,w,h)i}, and return OMLLM , OOWL (lines 5-6). Thus, we have
obtained language and bounding box outputs from the same vision representation where,
notably, we can control the set of queries Q without altering the MLLM output. In turn, this
enables to display the MLLM’s perceived visual semantics of x with respect to any concept.
3.2 Detecting Hallucinations: An important consequence of the shared OWL and MLLM
vision embeddings in J is that erroneous perceptions are reflected both in the text and in
the detection outputs. Therefore, the proposed model enables the visualization of MLLM
hallucinations via the detection output, greatly enhancing the interpretability of the model in
case of errors. As shown in Figures 1 - 2, when the MLLM outputs text referring to objects
that are not present in the image, then the detection output also displays these objects. In
Section 4.2 we design an experiment to confirm that this property holds.
3.3 Gradient Alignment Saliency Map: Given the proposed model J , we develop the
Gradient Alignment (GA) saliency map to explain the MLLM output. For input sequence
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Algorithm 2 Saliency map generation
Require: x, p, c

1: l̂,{(z,x,y,w,h)i}= J (x,p,{c}) ▷ Run model
2: s = argmaxr(l̂[r]) ▷ Find top logit index

3: ∇t =
∂ l̂[s]

∂ tOWL
1 ,...,tOWL

576
▷ Gradient of top logit w.r.t. vision representation

4: ∇o,i =
∂ zi

∂ tOWL
1 ,...,tOWL

576
, i ∈ 1, . . . ,576 ▷ Gradient of zi w.r.t. vision representation

5: ri = φ(∇t ,∇o,i)), i ∈ 1, . . . ,576 ▷ Compute box relevance scores
6: yc←−∞ ▷ Initialize output

7:
yc[yi : yi +hi,xi : xi +wi] =

max(yc[yi : yi +hi,xi : xi +wi],ri), i ∈ 1, . . . ,576 ▷ Compile output

8: return normalize(yc)

tW
1 , . . . , tW

576, t1, . . . , tn, GA explains the last generated token t̂576+n
.
= t576+n+1 with respect to

a visual concept c described via text (e.g., “dog”).
The main idea behind the proposed saliency map is to identify the relevance of each

bounding box om to the output token t̂576+n by measuring the correlation between the gra-
dients of the two outputs OMLLM,OOWL with respect to the shared image embedding tOWL

i
(Algorithm 1). For example, if a particular LLM logit l̂n is sensitive to a particular pertur-
bation (e.g., the value for token “cat” decreases), then we also expect a particular output
box om to be similarly sensitive (e.g., the value for query “cat” in zm decreases). Crucially,
since both outputs are computed from the same vision representation, gradient correlation
also implies semantic correlation. To assess this correlation, we measure the cosine simi-
larity φ( ∂zm

∂EOWL ,
∂ l̂n[s]

∂EOWL ) where zm indicates the relevance of the box to query c. If this value
is high, then the image region covered by the m-th bounding box in OOWL is relevant to the
output logit ln[s] in OMLLM . Most importantly, the box coordinates xi,yi,wi,hi given by OWL
are independent of the query, and thus the position of the boxes used for the saliency map
are unbiased by the use of the concept c as query.

We now detail the procedure, following Algorithm 2. First, we run J with a single query
{c} (thus zi are scalars zi), and obtain the language and detection outputs (line 1). In
particular, the output token is determined by the maximum value in the logit vector l̂, l̂[s]
(line 2). Then, we compute the gradients of the outputs of J with respect to the vision
embedding, obtained as per Algorithm 1 (lines 3-4). Subsequently, for each output box,
we compute the cosine similarity φ between the gradient ∇t of the top language logit and ∇o,i
of the i-th box class logit for query c with respect to the shared embedding tOWL

i , obtaining
scores ri (lines 5-6). Lastly, the saliency map is obtained by assigning to each pixel
the value of the maximum score ri for all boxes that cover that pixel (lines 7-9). The
saliency map is thus normalized and returned (line 10). Notably, GA can explain tokens
at any output position. To do so, it is sufficient to run the model until the desired token is
the one being generated. In Figure 3, we show examples of GA, computed with respect to
each object in the image appearing in the output tokens. Additional examples and details are
available in the supplementary material.
3.4 Bias assessment: Many social biases have been identified in LLMs [18], a portion of
which also affect MLLMs, such as biological gender and ethnicity biases, as these properties
can be deduced from images. For example, a MLLM prompted with “From 1 to 10, how
likely is this person to be a nurse?” may be biased to output higher scores when the input
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image depicts a female person, and lower scores when the input depicts a male person.
For the proposed J , we can exploit the shared vision representation tOWL

i to measure
these effects. To do so, we design perturbations e applied to tOWL

i to induce a particular
effect on OOWL and, by analyzing its effects on OMLLM , we can gain insight on the MLLM’s
functioning. Given our “nurse” example, for an image x depicting a female person, we may
design a perturbed vision representation tOWL

i + e such that OOWL incorrectly identifies a
male person. Since the vision representation is shared, the alteration in the visual semantics
will also be reflected in OMLLM . In particular, if the model is susceptible to biological gender
bias, it follows that the model’s answer score after the perturbation will be lower, since the
model interprets a male to be less likely to be a nurse than a female.
Algorithm 3 Semantic adversarial attack
Require: x, C+, C−, δ

1: tOWL
1 , . . . , tOWL

576 = EOWL(x) ▷ OWL-ViT vision embedding
2: {(z,x,y,w,h)i}=H(tOWL

i ,C−∪C+), i ∈ 1, . . . ,576 ▷ Detection output
3: LADV = ∑i∈1,...,576 ∑ j∈1,...,|C−| zi[ j]−∑i∈1,...,576 ∑ j∈|C−|,...,|C−|+|C+| zi[ j]
4: e =−δ · sign( ∂L

∂ tOWL
1 ,...,tOWL

576
) ▷ Compute FGSM perturbation

5: return tADV
1 , . . . , tADV

576 = (tOWL
1 , . . . , tOWL

576 )+ e ▷ Apply perturbation and return

To compute e, we design adversarial perturbations [23] which, differently from previous
works [4], can reflect a semantically meaningful change in the embedding, such that objects
pertaining to a set of concepts C− are substituted by concepts pertaining to a set C+ in the
visual representation tOWL

i (Figure 1). Our method, described in Algorithm 3, is based on
the Fast Gradient Sign Method (FGSM) [9], and is enabled by the compact perceived image
semantics representation in J , which is described by very few parameters {(z,x,y,w,h)i}.

To perform the perturbation, we first compute the original OWL vision embedding (line
1) and detection output with queries in C− ∪C+ (line 2). Then, we compute the adver-
sarial loss LADV (line 3) where a positive term takes into account all detection logits for
concepts in C−, such that they are minimized, and a negative term considers detection logits
for concepts in C+, such that they are maximized. Then, we apply the FGSM [9] attack
(line 4) and compute perturbation e in the direction of loss minimization:

e =−δ · sign(
∂LADV

∂ tOWL
1 , . . . , tOWL

576
), (2)

where δ > 0 is a user-defined magnitude. The perturbation is finally added to the original
embedding, thus constituting the adversarial embedding which is returned (line 5). Im-
portantly, except for the desired change, tOWL

i ’s semantics are unmodified, such that effects
to OMLLM can solely be attributed to the substitution of concepts C−, C+. We evaluate J ’s
proneness to biases in Section 4.4.

4 Experiments and Results
We now discuss our training procedures to construct model J (Section 4.1) and detail the
experiments that were carried out to show that J can be used to identify hallucinations
(Section 4.2), to validate the Gradient Alignment (GA) saliency map (Section 4.3), and to
assess and measure bias proneness (Section 4.4).
4.1 Evaluating W : We train the alignment MLP W using the proposed loss (Eq. 1) on the
full Open Images V4 [12] dataset (≈ 9M images) for 1 epoch, rescaling all samples to OWL’s
input dimension 768×768. More details are available in the supplementary material.
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Table 1: Evaluation of alignment layer using gpt-as-a-judge [16]. Reporting the average
GPT-4 score for 100 COCO captions provided by GT, LLaVa, and J .

Model: COCO GT LLaVa Ours
Avg. score: 6.9 7.0 6.1

Original image Explanation 1 Explanation 2
Q: Which explanation is for object "bicycle"
and which is for object "person"?

A1: Explanation 1 explains "bicycle" and
Explanation 2 explains "person"

A2: Explanation 1 explains "person" and
Explanation 2 explains "bicycle"

Figure 4: Example question (Q) and answers (A1, A2) from the user study.

We evaluate performance following the GPT-as-a-judge paradigm [16] and ask GPT-4
Vision [19] to rate the captions provided by J . A high score indicates that the evaluated
MLLM is able of good visual reasoning. For J , this also means that the output of the
alignment layer W (EOWL(x)) is a good substitute for the original LLaVa vision encoder.
As a baseline, we measure GPT-4 ratings, for the same images, of ground truth captions
and captions provided by the original LLaVa model. As shown in Table 1, the explainabil-
ity/performance tradeoff is clear in the slightly lower performance of J with respect to both
LLaVa and GT captions. Nonetheless, as shown in Figure 3, J is capable of good image un-
derstanding and reasoning. More example outputs available in the supplementary material.
4.2 Hallucination Detection: We design an experiment to verify that the strong link be-
tween OMLLM and OOWL can be exploited to detect whether the MLLM is hallucinating
objects in the image (Section 3.1). Given a dataset composed of annotated images xi con-
taining objects of classes ω ∈Ωi, where Ω⊇Ωi is the label class set for the dataset, we ask
the model “Yes or no, does the image contain a <ω ∈Ω>?” and correlate the answers to the
detection logits qω for query ω . We run the experiment on 1000 COCO [15] images and, for
each class ω ∈Ω, we record the model’s Yes/No response and the maximal detection maxq:

maxq(x,ω) = maxi(zi),{(z,x,y,w,h)i}=H(EOWL(x),ω) (3)
For each image, we separate the computation between GT classes Ωi and negative classes
Ω\Ωi, as we expect two different distributions for maxq, with higher values for GT classes
and lower values for negative classes.

We report results in Table 3. It is clear that for classes where the model answers “Yes”, the
average maxq is higher, and lower when the model answers “No”, regardless of wether the
object is present (GT class) or not (negative classes) in the image. This indicates a positive
correlation between LLM “Yes” answers and maxq, and thus the detection output. Thus, we
confirm that, when the MLLM hallucinates an object, the detection output will identify this
non-present object with at least one high zi, as can be seen in the examples of Figure 2.
4.3 GA Saliency Map Evaluation: A saliency map is only useful when it is understand-
able by its end users. As such, previous literature has introduced the concept of simulata-
bility [3, 5, 8, 10] to evaluate saliency methods, which is the property of saliency maps to
enable the user to predict the model output. The idea is that, if the user is able to predict the
output from the explanation of the input image, it follows that the saliency map is able to
provide insight on the model’s functioning.
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Table 2: Results for bias assessment.

Bias
<property>
→ We ask the model to score
from 1 to 10 the likelihood of the
person to possess this property

real characteristic (C−)
→ The delta score is computed
for the subset of images that
possess this property

adversarial characteristic (C+)
→ The attack is carried out to reduce
the likelihood of the real characteristic
C− in favour of the adversarial one C+

Delta score
→ The difference in the model’s nu-
merical answer to the likelihood of
<property> before and after the attack

Biological gender
→ Stereotypical properties “nurse”, “construction
worker” are the MLLM answer to “What is the most
stereotypically <female|male> job?”. Delta scores
for these properties highlight the model bias.
→ Scores for “female person” and “male person”
properties gauge the attack effectiveness.

nurse female person male person −2.5
male person female person +1.3

construction worker female person male person +0.3
male person female person −1.4

female person female person male person −5.3
male person female person +7.8

male person female person male person +6.8
male person female person −2.0

Ethnicity
→ Stereotypical properties “criminal”, “rich”
are the MLLM answer to “What stereotype for
<african-american|caucasian> people?”.
Delta scores for these properties highlight the model bias.
→ Scores for “african-american person” and “caucasian
person” properties gauge the attack effectiveness.

criminal african-american person caucasian person −2.2
caucasian person african-american person ±0.0

rich african-american person caucasian person −1.1
caucasian person african-american person ±0.0

african-american person african-american person caucasian person −4.1
caucasian person african-american person +0.9

caucasian person african-american person caucasian person −2.2
caucasian person african-american person −2.1

Table 3: Results for hallucination detection
average maxq for COCO images

MLLM answers “Yes” MLLM answers “No”
Response for GT classes 0.243 0.113
Response for negative classes 0.034 0.017

We assess simulatability through a user study, and ask users to predict which object in
the image the explanation refers to (Figure 4). Since GA explains the last output token, this
amounts to effectively predicting the MLLM’s output. We setup the user study as an online
questionnaire where users have to answer to 10 questions. For each, they are presented with
three versions of one PASCAL-VOC [7] image, where the first is the original, and the others
are overlay GA explanations of two ground truth objects in the image (Figure 4).

We gather 17 participants from Ms.C. and Ph.D. students with an AI background, and
obtain average correct response rate of 0.941, much higher than the expected random chance
rate 0.5 for 2-option multiple choice questions. To validate this, we perform a one sample
proportion binomial test where the null hypothesis is H0 : p = 0.5. Given our sample size 17
and proportion of correct answers 0.941, we obtain p-value equal to 0.0001, with test statistic
X = 16. Thus, we reject H0 and confirm that GA enables simulatability, and consequently
we argue that our saliency methodology can help users gain insight on J ’s functioning.

4.4 Bias Assessment Benchmark: Enabled by semantic adversarial perturbations (Sec-
tion 3.4), we propose a benchmark to measure the extent to which biases affect J . To do
so, we construct datasets composed of 100 portrait images for each of the considered biases,
which are generated using SDXL [20] to ensure that the images do not display objects other
than the person. Furthermore, the datasets are split in two subsets, each displaying people
pertaining to one of two categories object of the bias. For the biological gender bias, we
generate 50 images of women and 50 images of men, for the ethnicity bias, we generate
50 images of African-American people and 50 images of Caucasian people. Our selection
of categories is not exhaustive, but was chosen to encompass diverse demographic repre-
sentations relevant to the biases under study. All samples are made publicly available, and
generation details are discussed in the supplementary material.

As discussed in Section 3.4, we can assess susceptibility to biases by running J twice
for each image, once using embedding tOWL

1 , . . . , tOWL
576 = EOWL(x), and once using the adver-

sarial embedding tADV
1 , . . . , tADV

576 (Algorithm 3). For both embeddings, we use prompt “From
1 to 10, how likely is this person to be <stereotypical property>?”, and measure
changes in the answer before and after the attack. Similar output changes could be discov-
ered by running the model with images from the two subsets (e.g., obtaining lower scores for
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“nurse” with images of male people). However, the images could contain other contextual
clues that may influence the MLLM. We avoid these effects by analyzing score differences
in relation to an attack constructed so that the only semantic alteration pertains to concepts
in C+,C−, and by using SDXL-generated images that exclusively depict people’s portraits.

For the two considered biases, we gather the <stereotypical property> by ask-
ing the model. This ensures that the considered characteristics reflect the model’s reasoning
and possible biases. For the biological gender bias, we ask the model “What is the most
stereotypically <female|male> job?”, and for the ethnicity bias, we ask “What stereo-
type for <african-american|caucasian> people?”.

We display results, including the answers to these prompts, in Table 2. When attacking
with C− = “female person” and C+ = “male person”, scores for “nurse” decrease, while
they increase in the reverse attack. For “construction worker”, we see the opposite, with
scores increasing when C+ = “male person” and vice versa in the reverse attack. These
results highlight the model’s susceptibility to biological gender bias. We also verify the suc-
cessfulness of the attack by observing that scores for “male person” and “female person”
properties changes accordingly when C+/− = {"female person"},{"male person"}. For eth-
nicity, we discover that the attacks are not always successful, as demonstrated by the in-
consistent results highlighted in red in Table 2. In particular, scores for “caucasian per-
son” decrease when C− = {“african-american person"}, C+ = {“caucasian person"}. As
such, results for stereotypical property “rich” are uninformative. Instead, for stereotypical
property “criminal” the results follow the pattern described for the biological gender bias,
demonstrating that the model is, to some extent, prone to ethicity bias.

5 Conclusions and Future Works
In conclusion, we have developed a novel architecture J by aligning the vision encoder of
an OWL model to a MLLM. This enables to obtain a compact representation of the vision
input, which in turn enables interpretability of the model via our proposed GA saliency map,
hallucination visualization, and bias assessment through semantic adversarial perturbations.
This work is a step forward towards transparency and trustworthiness of MLLMs, which are
key properties for the application of these models to real-world applications such as virtual
assistants. Through the proposed methodologies, we offer practical tools for understanding
the decision-making process of complex MLLMs such as LLaVa. We hope that the discussed
ideas and algorithms may be useful for academics and professionals alike in the development
of safer, more explainable MLLMs.

Future works may improve the architecture by fine-tuning the entire MLLM on OWL
vision encoding, thus overcoming the limitations of the alignment layer. Moreover, the GA
explanation could be improved to also analyze the relationship between box position/size and
text output, potentially unveiling interesting patterns. Lastly, our work could be extended to
other forms of bias and to other MLLM architectures.
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