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Abstract

Conventional semi-supervised learning (SSL) encounters challenges in effectively
addressing issues associated with long-tail problems, primarily stemming from imbal-
ances within a dataset. Previous semi-supervised approaches incorporating contrastive
learning relied on unlabeled samples to apply the contrastive learning method. Conse-
quently, to identify positive samples from unlabeled ones, they needed to make pseudo-
labels, but inaccurate pseudo-labels lead to confirmation bias toward majority classes in
long-tail datasets. Therefore, we try to obtain meaningful information from labeled sam-
ples which include accurate labels. In this paper, we introduce Seperated Independent
Contrastive Semi-Supervised Learning (SICSSL) for long-tail, which leverages a super-
vised contrastive learning approach for labeled samples and unlabeled samples separately
and independently to enhance performance. In our experiments, employing labeled sam-
ples for contrastive learning yields superior performance compared to the contrastive
learning using only unlabeled samples.

1 Introduction
Recently, semi-supervised learning in deep learning has become a solution to decrease the
need of time-consuming and labor-intensive labeling. The semi-supervised learning method
incorporates a substantial number of unlabeled samples alongside a restricted set of labeled
samples for training deep learning models. Typical semi-supervised learning has been de-
veloped mainly under the assumption of uniform data distribution among class samples. In
reality, this assumption is often invalid, as real-world datasets commonly exhibit a ‘long-
tail’ problem. The long-tail problem arises when there is a large gap between the number

† Corresponding author.
© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 KIM ET AL.: SEPARATED AND INDEPENDENT CONTRASTIVE LEARNING ON LT-SSL

Figure 1: Experimental results on a CIFAR-10 public dataset. The X-axis represents the
index of the class and the Y-axis represents accuracy, precision and recall with each corre-
sponding to figures (a), (b) and (c), respectively. The blue bar shows the performance results
of the original FixMatch and the orange bar shows the results of the proposed method. When
applying our proposed method to FixMatch, the model shows the performance enhancement
on all the class indices (x-axis shows the class indexes: lower is major and higher is mi-
nor). Note that the proposed method obtains noticeable improvements in recall for the minor
classes (indices 8 and 9).

of data samples in the majority class and the minority class. Consequently, employing stan-
dard semi-supervised learning methods to train the model for long-tail problems can result
in a ‘confirmation bias’ toward the majority classes. As a response to this challenge, numer-
ous researchers have proposed several methods recently to address long-tail semi-supervised
learning tasks[14, 20, 23, 25, 32].

Contrastive learning has been introduced as a means to train models through representa-
tion learning without relying on a classifier layer [6, 7, 13, 15, 16, 30]. While supervised con-
trastive learning (SupCon) [19] is a well-known approach that incorporates label information
for training to utilize more positive samples than conventional unlabeled contrastive learning
approaches. SupCon tends to exhibit confirmation bias toward majority classes in long-tail
datasets, primarily due to the lack of positive samples in the minority class [24]. Class-
aware Contrastive Semi-Supervised Learning (CCSSL) [33] has predominantly focused on
only adapting a contrastive methodology to unlabeled samples. Therefore, in long-tail semi-
supervised learning, contrastive learning for labeled samples has gathered comparatively less
attention in the existing research landscape.

In Fig. 1, FixMatch obtains high recall and low precision on the major class and low re-
call and high precision on minor class because of confirmation bias toward major class. The
main goal of imbalanced semi-supervised learning is to increase recall and precision on the
minor class and the major class, respectively. In this paper, to obtain better performance on
precision and recall, simultaneously, we propose Separated Independent Contrastive Semi-
Supervised Learning for Long-Tail called SICSSL. In the proposed SICSSL, two separate
and independent contrastive loss terms are used for the disjoint labeled and unlabeled sam-
ples. The added separated contrastive loss terms on labeled samples and unlabeled samples
can lead to the prevention of overfitting on the classifier layer while working as a regularizer.
As shown in Fig. 1, when adopting the proposed SICSSL in FixMatch, the model achieves
improved performance. Particularly, in the minor classes such as the class indexes of 8 and
9, the model obtains higher accuracy than that without the SICSSL. Note that the adoption of
the SICSSL leads to enhanced recall in minority classes and enhanced precision in majority
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classes.

The proposed SICSSL is simple and effective, requiring only the addition of a multi-layer
perceptron (MLP) layer for efficient model training by incorporating supervised contrastive
learning. The simplicity allows our method to seamlessly integrate with any semi-supervised
learning architecture such as ABC [23] and ACR [32].

2 Related Works

• Semi-supervised Learning : Generally, supervised learning requires a large number
of labeled data samples to achieve meaningful accuracy performance. However, collect-
ing a sufficiently large number of labeled samples to train a model is time-consuming and
labor-intensive. To obtain satisfactory performance without enough labeled samples, semi-
supervised learning has been proposed to use not only a small amount of labeled samples
but also a large number of unlabeled data samples for training a model. The main idea of
semi-supervised learning is to use pseudo-labels and consistency loss function for employing
unlabeled samples.

MixMatch [3] and ReMixMatch [2] use soft pseudo-labels for unlabeled samples. They
use distribution alignment and sharpening to generate pseudo-labels. FixMatch [29] is a pop-
ular method in semi-supervised learning and they use one-hot pseudo-labels for unlabeled
samples. On the other hand, FlexMatch [34] and FreeMatch [31] use an adaptive threshold
for each class to employ the unlabeled samples more effectively so that a model can utilize
diverse unlabeled samples compared to previous semi-supervised approaches.

• Long-tail Problem : Recently, long-tail problems have gained attention in many appli-
cations since the long-tail problems are unavoidable in real-world scenarios. The primary
challenge associated with long-tail problems is the confirmation bias toward majority classes
[4, 12, 18]. Re-weighting [10, 27] and re-sampling [1, 5, 17, 21, 26] are typical meth-
ods to improve performance in long-tail problems. DARP [20] and DASO [25] employ a
pseudo-label refinement method for long-tail semi-supervised learning tasks to reduce incor-
rect pseudo-label assignments and ensure improved model performance. ABC [23] employs
a masking strategy to mitigate confirmation bias for both labeled and unlabeled samples.
Adaptive consistency regularizer (ACR) [32] utilizes two-branch network and adaptive ad-
justment method to refine pseudo-labels.

• Contrastive Learning : Contrastive learning is a powerful technique for learning infor-
mative representations from unlabeled data. MoCo [16] and SimCLR [6] propose to utilize
representation learning on unlabeled samples for training a model. MoCo uses a momentum
encoder and a queue memory bank to make different latent features for comparison with
anchor features. Different from MoCo, SimCLR utilizes negative samples only from the
mini-batch stage without a momentum encoder and queue. SupCon [19] uses the supervised
manner in contrastive learning to utilize more positive samples compared to unsupervised
contrastive learning methods. TSC [24] uses a target cluster to solve the confirmation bias
when using supervised contrastive learning in long-tail recognition problems. CCSSL [33]
employs a contrastive learning approach in semi-supervised learning. The method utilizes
supervised contrastive learning for unlabeled samples through pseudo-labeling.
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3 Motivation
In the CCSSL[33], authors utilize contrastive learning only on ‘unlabeled’ samples to im-
prove the performance. In addition, to control the influence of contrastive learning loss on the
unlabeled samples, they reflect re-weighting approach in a contrastive loss term. The main
problem of CCSSL in imbalanced semi-supervised learning is that CCSSL uses inaccurate
pseudo-labels to determine the ‘positive samples’. In consequence, in the imbalanced semi-
supervised learning, the probability of generating inaccurate pseudo-labels becomes higher
compared to the uniform semi-supervised learning and these inaccurate pseudo-labels can
lead to performance degradation. To better exploit the benefit of contrastive learning, in this
paper, we focus on how to utilize ‘labeled samples’ for the contrastive learning.

Intuitively, the supervised contrastive learning can lead to confirmation bias toward ma-
jority classes due to the gap in sample sizes between majority and minority classes. Through
the experiments, however, we show that SICSSL which utilizes labeled samples for con-
trastive learning can lead to improving performance.

The main difference between conventional contrastive learning approaches for an imbal-
anced problem and our approach is the role of the contrastive learning: Previous SupCon
[19] and TSC [24] use contrastive learning for pre-training a backbone network. Then, they
train the model using linear probing for a classifier layer or using the fine-tune of all the
layers. In our case, however, we use the contrastive learning loss term as a ‘regularizer’ of
improving the generalization ability of a model by reducing overfitting since the conventional
semi-supervised learning loss such as a FixMatch loss term and the potentially competing
contrastive loss term are used simultaneously for training.

4 Preliminary
• Problem setting : In the proposed method, we use two datasets that are labeled (Dl ∈
{(xl

i ,y
l
i)}N

i=1) and unlabeled (Du ∈ {(xu
j)}M

j=1) dataset. N and M are the number of labeled
samples and unlabeled samples, respectively. In addition, N1 and M1 are the number of
samples in major class on labeled samples and unlabeled samples, respectively. For the i-th
labeled sample, it has ground-truth information yl

i which is an one-hot vector.
• Semi-supervised learning : Many existing semi-supervised learning algorithms utilize
supervised loss for labeled samples and consistency loss for unlabeled samples, respectively.
The goal of those algorithms is to minimize the supervised loss and consistency loss. In this
paper, we adopt a FixMatch approach to solve the semi-supervised learning problem. The
loss functions can be defined as follows:

LCE =− 1
B

B

∑
i=1

ℓCE(C(E(xl
i)),y

l
i) (1)

Lcon =− 1
µB

µB

∑
j=1

1(max(C(E(α(xu
j))))≥τ) · ℓCE(C(E(A(xu

j))), ŷ
u
j) (2)

Lback = LCE +λcon ·Lcon (3)

In Eq. (1) - (3), LCE denotes a cross-entropy loss and Lcon is a consistency loss. A(·),
α(·), C(·) and E(·) are strong augmentation, weak augmentation, the classifier layer and
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encoder backbone layer, respectively. Pseudo-label (ŷu
j ) is a one-hot vector generated by

applying an argmax function to C(E(α(xu
j))) for calculating consistency loss.

• InfoNCE for contrastive learning : In contrastive learning approaches, selecting pos-
itive samples is crucial to improve performance. MoCo and SimCLR do not use labeled
information so that they use an augmentation strategy to derive positive samples from an
anchor sample. Consequently, the number of positive samples is proportional to the number
of augmentations.

On the other hand, in supervised contrastive learning, to determine the positive samples
from an anchor sample, label information from other samples can be used. In this situation,
the number of positive samples depends on the number of augmentations and the number of
the samples in a same class. The loss terms for self-supervised contrastive learning (Lsel f )
and supervised contrastive learning (Lsup) can be described as follows:

Lsel f =−∑
i∈I

log(
exp(zi · zp

i /T )
∑a∈A(i)

exp(zi · za/T )
) (4)

Lsup =−∑
i∈I

1
|P(i)|

∑
p∈P(i)

log(
exp(zi · zp

i /T )
∑a∈A(i)

exp(zi · za/T )
) (5)

In Eq. (4) and Eq. (5), zi, zp
i and za are a vector from an anchor sample, positive sample

and all samples in mini-batch excluding anchor sample, respectively. T is a scaling factor to
make smoothing or sharpening of similarity values. I, P(i) and A(i) are the set of the indices
for mini-batches, the set of latent vectors from positive samples in the i-th mini-batch and
the set of latent vectors from all samples in the i-th mini-batch excluding the anchor sample
(zi), respectively. In self-supervised contrastive learning, the number of positive samples
is equal to “the number of augmentations - 1” while it is determined by both labeled class
information and augmentations in supervised contrastive learning.
• Augmentation strategy for labeled samples : Traditionally, prior works solely utilize un-
labeled samples for contrastive learning, thereby omitting the need for strong augmentation
in labeled samples. However, our experiments reveal that employing supervised contrastive
learning on labeled samples with strong augmentation significantly enhances performance
compared with the case where this augmentation is not used.

To provide the alternative perspective in comparison with the case of using only weak
augmentation, we adopt a policy of strong augmentation, mirroring the approach used with
unlabeled samples. Leveraging label information in labeled samples allows us to identify
more positive samples. Consequently, we can employ the original supervised contrastive
technique to train the model without relying on pseudo-labels.
• Seperated and independent supervised contrastive learning for semi-supervised learn-
ing: In this paper, we use two independent contrastive loss terms on labeled and unlabeled
samples. For unlabeled samples, we adopt a CCSSL contrastive loss term to re-weight the
samples with inaccurate pseudo-labels. Our total loss term can be described as follows:

Lsup
l =−∑

i∈Il

1
|Pl

(i)|
∑

p∈Pl
(i)

log(
exp(zi · zp

i /T )
∑a∈A(i)

exp(zi · za/T )
) (6)

Lsup
u =− ∑

j∈Iu

1
|Pu

( j)|
∑

p̂∈Pu
( j)

w j,p · log(
exp(z j · zp̂

j /T )

∑a∈A( j)
exp(z j · za/T )

) (7)
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Figure 2: Framework for our proposed SICSSL. To utilize the contrastive learning approach,
we adopt a multi-layer perceptron to generate a latent vector. The main component of SIC-
SSL is that the contrastive learning loss terms are calculated separately and independently
for labeled and unlabeled samples.

wmask
j,p =


1 if j = p,
1 if z j and zp are from the samples with same pseudo-label

and q j > τcon and qp > τcon,

0 otherwise.

(8)

w j,p =

{
q j ·qp ·wmask

j,p if j ̸= p,
wmask

j,p otherwise.
(9)

Ltotal = Lback +λ
sup
l ·Lsup

l +λ
sup
u ·Lsup

u (10)

In Eq. (6), (7) and (8), j and p are the indices of an anchor and a positive sample,
respectively, in a mini-batch for unlabeled samples. Il , and Iu are the sets of the indices for
mini-batches on labeled samples and unlabeled samples. Pl

(i) and Pu
( j) are the sets of indices

for the latent vectors from positive samples in i-th mini-batch for labeled samples and j-th
mini-batch for unlabeled samples, respectively. q j and qp are softmax outputs of a weakly
augmented anchor and a weakly augmented positive sample. The softmax output is used as
a confidence measure to determine the inclusion of the given input sample in loss evaluation,
according to a confidence threshold (τcon).

In Eq. (10), there is no interaction between the two contrastive learning loss terms for
labeled samples and unlabeled samples. Therefore, there is no pull and push between labeled
samples and unlabeled samples. With the loss term given in Eq. (6), we try to utilize accurate
labeled samples for contrastive learning, which can obtain the accurate positive samples.

In conventional contrastive learning in supervised learning tasks, two-step training is
used: (1) they pre-train the model using contrastive learning, and (2) they fine-tune the
model using supervised learning with cross-entropy loss term. However, in our method, the
contrastive learning loss term is used simultaneously with loss terms for semi-supervised
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Table 1: Comparison between previous works and proposed methods with various imbal-
anced ratios (γ). The symbol, ‘*’, indicates an unstable training result.

Algorithm CIFAR-10-LT (N1 = 1000,M1 = 4000) CIFAR-100-LT (N1 = 200,M1 = 300)
γ = 50 γ = 100 γ = 150 γ = 20 γ = 40 γ = 60

FixMatch [29] 72.41±1.19 62.72±1.56 59.08±1.15 48.48±1.02 44.03±0.69 41.50±0.41
w. DASO [25] 75.64±0.42 65.90±2.90 62.57±1.44 49.26±0.45 44.52±0.38 40.70±1.15
w. CCSSL [33] 75.18±0.41 67.16±1.34 62.04±1.44 50.19±0.84 45.73±0.46 42.96±0.67

w. SICSSL(Ours) 76.86±0.44 68.37±0.46 63.45±0.56 53.34±0.13 48.37±0.27 45.60±0.27
ABC [23] 85.20±0.26 80.63±1.04 77.70±0.48 54.58±0.49 49.33±0.45 46.51±0.45

w. CCSSL [33] 85.48±0.68 80.78±0.89 78.01±0.41 54.64±0.22 49.47±0.37 46.81±0.40
w. SICSSL(Ours) 85.86±0.36 81.57±0.72 77.46±0.97 57.44±0.28 51.38±0.23 48.27±0.49

ACR [32] 82.91±0.44 78.93±1.13 75.93±0.90 54.20±0.14 49.73±0.43 47.30±0.62
w. CCSSL [33] 83.04±0.32 79.49±1.04 76.73±1.53 55.53±0.05 50.69±0.69 *17.21±22.87

w. SICSSL(Ours) 84.96±0.38 81.63±0.93 78.29±0.94 56.66±0.26 52.17±0.41 49.38±0.33

Table 2: Comparison between previous works and proposed methods with various settings
on the number of labeled samples and unlabeled samples on the major class (N1 and M1).

Algorithm
CIFAR-10-LT (γ = 100) CIFAR-100-LT (γ = 20)

N1 = 250 N1 = 500 N1 = 1000 N1 = 100 N1 = 150 N1 = 200
M1 = 4750 M1 = 4500 M1 = 4000 M1 = 400 M1 = 350 M1 = 300

FixMatch [29] 52.32±4.09 56.72±1.92 62.72±1.56 42.30±0.66 46.91±0.90 48.48±1.02
w. DASO [25] 57.74±0.92 61.85±2.44 65.90±2.90 42.96±0.25 47.27±0.26 49.26±0.45
w. CCSSL [33] 56.98±2.39 62.72±1.36 67.16±1.34 44.49±0.24 47.85±0.26 50.19±0.84

w. SICSSL (Ours) 53.28±1.67 60.68±0.21 68.37±0.46 47.08±0.88 50.79±0.29 53.34±0.13
ABC [23] 72.69±2.08 77.10±0.41 80.63±1.04 46.08±0.62 51.69±0.42 54.58±0.49

w. CCSSL [33] 74.18±2.23 76.86±1.64 80.78±0.89 47.60±0.51 52.37±0.17 54.64±0.22
w. SICSSL(Ours) 74.03±3.19 77.89±0.46 81.57±0.72 50.53±0.48 55.76±0.40 57.44±0.28

ACR [32] 67.43±0.96 72.95±0.86 78.93±0.90 47.54±0.36 52.02±0.35 54.20±0.14
w. CCSSL [33] 68.08±1.32 73.97±1.41 79.49±1.04 49.03±0.54 52.02±0.35 55.53±0.05

w. SICSSL(Ours) 66.79±1.43 77.02±1.18 81.63±0.93 49.89±1.06 54.25±0.63 56.66±0.26

learning. In this case, the contrastive loss term works as a ‘regularization’ term and it sup-
presses confirmation bias in a ‘classifier layer’.

Figure 2 illustrates the framework of SICSSL. Unlike the conventional SupCon [19], the
model utilizes the supervised contrastive loss term on labeled samples simultaneously and
independently with the semi-supervised loss term.

In the ablation study, we try to compare the two types of contrastive learning approaches
on labeled and unlabeled samples. With obtained experimental results, we show that the
separated and independent contrastive learning approach is more suited for imbalanced semi-
supervised learning. For the trainings, λ

sup
l and λ

sup
u are set to 1.0 for CIFAR-10, CIFAR-100

and ImageNet-127 public datasets. For STL-10 dataset, λ
sup
l and λ

sup
u are set to 0.1.

5 Experiments

• Dataset : We use well-known public datasets to assess performance: CIFAR-10, CIFAR-
100 [22], STL-10 [8] and imagenet-127 [28] datasets with long-tail distribution. We partition
the training dataset into labeled and unlabeled samples. Here, γ , N1 and M1 denote the
imbalanced ratio, number of labeled samples on the major class and number of unlabeled
samples on the major class, respectively. The imbalance ratio can be calculated by γ =
# o f the ma jor
# o f the minor .
• Model architecture : A Wide ResNet-based (WRN) CNN architecture is employed along
with the FixMatch to generate pseudo-labels for unlabeled samples. An MLP layer is added
to generate latent vectors (zi,z j,z

p
i ,z

p̂
j and za) for calculating contrastive learning loss terms

in Eq. (6) and (7).
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Table 3: Comparison between previous works and proposed methods on STL-10 public
dataset. The symbol, ‘†’, indicates that SICSSL obtains lower performance compared to
DASO. However, SICSSL produces better results than FixMatch with DASO when SICSSL
is combined with DASO.

Algorithm
γl = 10,γu = N/A γ = 20,γu = N/A

N1 = 150 N1 = 450 N1 = 150 N1 = 450
M1 = 100k M1 = 100k M1 = 100k M1 = 100k

FixMatch [29] 56.08±1.83 64.54±0.94 48.19±1.16 56.38±2.80
w. DASO [25] 63.75±0.08 68.44±1.19 56.00±0.46 64.88±1.59
w. CCSSL [33] 56.82±1.94 71.42±0.79 49.56 ± 0.71 58.07±0.89

w. SICSSL(Ours) †57.81±2.31 72.29±0.93 †47.94±1.63 †60.13±1.81
DASO [25] 63.75±0.08 68.44±1.19 56.00±0.46 64.88±1.59

w. SICSSL(Ours) 64.27±0.29 71.13±0.56 55.90±1.81 66.30±0.60
ABC [23] 64.74±0.19 71.93±0.44 60.36±0.80 68.48±1.85

w. CCSSL [33] 65.83±0.02 72.24±1.39 60.70±0.04 69.32±1.49
w. SICSSL(Ours) 67.04±0.29 73.02±0.39 60.91±0.01 72.07±0.71

ACR [32] 64.62±1.00 72.92±0.83 61.41±0.72 69.38±2.88
w. CCSSL [33] 64.33±1.18 72.91±0.14 63.42±1.26 69.92±2.13

w. SICSSL(Ours) 66.08±0.41 74.68±0.28 62.90±0.96 72.45±0.60

Table 4: Influence of SICSSL in ImageNet-127 public dataset on FixMatch and ACR. The
symbol, ‘*’, indicates unstable training result.

Algorithm Image Size
32×32 64×64

FixMatch [29] 44.88 46.85
w. DASO [25] 45.18 47.04
w. CCSSL [33] 44.58 *23.61

w. SICSSL(Ours) 46.41 49.12
ACR [32] 41.20 45.44

w. CCSSL [33] *21.90 44.91
w. SICSSL(Ours) 42.95 47.90

• Training strategy : An Adam optimizer is used with a 0.002 learning rate without a
scheduling algorithm. Training is conducted on the dataset for 250,000 iterations (500
epochs × 500 iterations for each epoch). To enhance the performance, we also use the
exponential moving average (EMA) with the momentum of 0.999. The numbers of labeled
samples and unlabeled samples in each batch are 64 and 64, respectively. The confidence
thresholds, τ in Eq. (2) and τcon in Eq. (8), for deciding when to use pseudo-labels for the
consistency loss and the contrastive loss are set at 0.95 and 0.9, respectively. For the aug-
mentation strategy, we apply both weak and strong augmentation techniques to both labeled
and unlabeled samples.

Typically, strong augmentation is used exclusively for unlabeled samples to enhance fea-
tures through consistency loss. However, in this work, supervised contrastive learning is
applied to labeled samples and strong augmentation is used also in labeled samples in order
to generate diverse views from the same anchors. All evaluations are performed indepen-
dently three times using different random seeds to ensure the reliability of the results.

6 Results

Table 1 and 2 present accuracy comparisons between the proposed method and previous
works while varying “imbalanced ratio” (γ) and the “number of samples on major class in
labeled and unlabeled dataset” (N1 and M1) on CIFAR-10-LT and CIFAR-100-LT. We adjust
the imbalanced ratio and labeled ratio ( N1

N1+M1
) to control the difficulty of a classification

task. A higher imbalanced ratio and lower labeled ratio make the problem more challeng-
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Table 5: The influence of separated and independent contrastive learning approaches in long-
tail semi-supervised tasks in CIFAR-100-LT datasets (γ = 20, N1 = 200 and M1 = 300).

Dataset Algorithm Performance Measure
Acc. Major Acc. Minor Acc.

Baseline [23] 54.58±0.49 68.08±0.13 41.08±0.87
CIFAR-100 w. CCSSL [33] 54.64±0.22 67.10±0.49 41.37±0.05

-LT w. UniCSSL 57.10±0.23 69.81±0.30 44.39±0.75
w. SICSSL (Ours) 57.44±0.28 69.61±0.50 45.26±0.06

ing to achieve higher accuracy. Our SICSSL can be utilized easily with previous methods
(FixMatch, ABC and ACR) and obtains higher performance than those without SICSSL.

Also, we train the models on STL-10 (Table 3) and ImageNet-127 (Table 4) datasets
to validate the further extensibility of the SICSSL. In STL-10 dataset, the SICSSL leads
to performance enhancement on various imbalanced settings and size of labeled samples.
Note that SICSSL can not outperform the DASO when the SICSSL is adopted directly in
FixMatch. However, the benefit of SICSSL is that SICSSL can be adapted easily in various
semi-supervised learning. So, SICSSL can be fused with DASO and in this case SICSSL
leads to performance enhancement in the most cases as shown in “DASO w. SICSSL” in
Table 3. In the ImageNet-127 dataset with 32×32 and 64×64 image sizes, the proposed
SICSSL obtains better performance than those without the SICSSL in FixMatch and ACR.
When CCSSL is adopted in FixMatch and ACR, the model obtains unstable results as shown
in Table 1 and 4 (marked by ‘*’). From the experiments, we expect that the SICSSL provides
more stable training convergence than CCSSL when used for the contrastive learning with
imbalanced semi-supervised learning tasks.
• Discussion : In Table 1, 2 and 3, the model obtains lower performance compared to those
without SICSSL approach when the number of labeled samples is extremely small (e.g.,
N1 = 250 in CIFAR-10 and N1 = 150 in STL-10 dataset). In CIFAR-10-LT with N1 = 250,
the number of samples in the minor class is just ‘2’ (N10 = 2). In this extreme case, the
probability of causing confirmation bias toward major class is high even SICSSL is used.
In STL-10 dataset, the probability of having confirmation bias is higher than in CIFAR-10
dataset since the gap in sample size between labeled and unlabeled samples is huge. From
the experiments, we observed that the superiority of our approach cannot be guaranteed in
such extreme cases.

When we train the model using FixMatch with previous methods and SICSSL, SICSSL
obtains lower performance compared to DASO († in Table 3). Since the SICSSL does not use
a pseudo-label refinement approach, SICSSL can be utilized with DASO. When adopt SIC-
SSL in DASO, the model outperforms in the most cases in STL-10 dataset without the case
of N1 = 150 and γ = 20. To prevent performance degradation, we have to search for suitable
hyper-parameters in the case of having the extremely small number of labeled samples.
• Influence of Separated Independent Contrastive Learning on Labeled and Unlabeled
Samples : In this work, we proposed a ‘separated and independent’ contrastive learning
approach rather than using a unified contrastive learning where the contrastive learning is
applied to an unified set of mixed labeled and unlabeled samples. In supervised contrastive
learning, selecting accurate positive samples is important for developing a high accuracy
model. Using the separated and independent approach, we can guarantee robust accurate
contrastive learning on labeled samples which are not mixed with inaccurate positive sam-
ples from unlabeled samples. As shown in Table 5, SICSSL outperforms previous works and
‘UniCSSL’ (Unified Constrastive Semi-Supervised Learning) which employs an unified con-
trastive learning loss term on a mixed set of labeled and unlabeled samples. It is noteworthy
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Table 6: The influence of different augmentation strategies in CIFAR-100-LT dataset (γ =
20, N1 = 200 and M1 = 300) with SICSSL. Strategy 1 (S-1) is to use strong augmentations
in a semi-supervised learning for unlabeled samples and Strategy 2 (S-2) is to use SimCLR-
based augmentations.

Augmentation Performance Measure
Strategy Acc. Major Acc. Minor Acc.

S-1 56.90±0.39 68.89±0.29 44.91±0.81
S-2 55.16±0.30 67.20±0.28 43.12±0.83

that our SICSSL achieves higher performance in minority classes.
• Augmentation Strategy on Labeled Samples for Contrastive Learning : Typically, in
contrastive learning approaches for vision tasks, three augmentation strategies, namely ‘ran-
dom crop and resize’, ‘color distortions’, and ‘Gaussian blur’, are commonly employed to
generate diverse views (used as augmentations in SimCLR). As shown in Table 6, the use of
the strong augmentation strategy (S-1) yields better performance compared to the SimCLR-
based augmentation strategy (S-2). Strong augmentation used in S-1 consists of Cutout [11],
CTAugment [2] and RandAugment [9]. This is the same with the strong augmentation strat-
egy used in training for unlabeled samples.

7 Conclusion

This paper proposed a model which exploits the effectiveness of supervised contrastive
learning on the separated two sample sets, labeled samples and unlabeled samples, for
semi-supervised learning on a long-tail imbalanced dataset. While previous researches in
the semi-supervised learning with contrastive learning have predominantly concentrated on
leveraging unlabeled samples, our experiments revealed that applying contrastive learning to
labeled samples enhances performance in long-tail semi-supervised learning. We also inves-
tigated the impact of the contrastive learning strategies and the augmentation strategies on
the accuracy performance in the ablation studies. Our results demonstrated that the proposed
SICSSL produces better performance than previous work and it can be easily and orthogo-
nally adapted with recently proposed imbalanced semi-supervised learning approaches, such
as ABC and ACR.
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