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1 Experimental Setting Details

1.1 Training Details
We use DF2K (DIV2K [1]+Flicker2K [11]) with 3450 high-resolution images as the

training dataset. The low-resolution (LR) images are generated from the ground truth images
by the BICUBIC downsampling in MATLAB. We evaluate experimental results with PSNR
and SSIM [18] values on Y channel of images transformed to YCbCr space. We use the
input patch size is 64× 64, and the mini batch size is 32 with total training iterations are
set to 500K. The learning rate is initialized as 2e− 4 and reduced by half at [250K, 400K,
450K, 475K], where 1K means one thousand. For data augmentation on training data, we
use geometric data augmentations are random rotation of 90◦, 180◦, 270◦ and horizontally
flipping. For x4 SR , we utilize the pre-trained model x2 SR weight and halve the iterations
for each learning rate decay as well as total iterations. We simply use L1 loss function, Adam
optimizer with β1 = 0.9, β2 = 0.99, and zero weight decay to train our model. Our CPAT is
implemented on PyTorch [15] framework with 8 NVIDIA RTX6000 GPUs.

1.2 Network Structure Details
For the base model, we set the number of RWAG and SPWin-SA to 6, the channel number

to 180, and the window size is set to 16. The overlapping ratio in OCAM is set to 0.5. For the
lightweight model, we keep the settings the same as the base model except for the following
settings. We reduce the channel number from 180 to 51. We use 4 RWAG modules, and the
number of SPWin-SA is also reduced to 4, except for the last block of RWAG, where we use
5 SPWin-SA modules. When applying the self-ensemble strategy [16], “†” is added after the
model name called CPAT†, and we only apply for base CPAT model.
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2 Self-ensemble Strategy

Figure 1: Self-ensemble strategy. Figure 2: Augmentation of test images for self-
ensemble strategy by rotation and flip.

We apply self-ensemble to our network during the testing phase. For each input image
ILR in testing time, we perform transformations: rotate 90◦, rotate 180◦, rotate 270◦, rotate
90◦ + flip vertical, rotate 180◦ + flip vertical, and rotate 270◦ + flip vertical, resulting in
a total of eight images ILR

i = Ti(ILR
n ) including the original one, where Ti represents the

i-th transformation, i = 1,2, ...,8 including identity, which are shown in Fig. 2. We then
use the best model to generate high-resolution images {OSR

1 , ...,OSR
8 } for these transformed

images which was described in Fig. 1. We then apply inverse transformation to those SR
images to get the original geometry ÔSR

i = T−1
i (OSR

i ), where T−1
i represents the i-th inverse

transformation. Finally, we simply average these outputs to obtain the final result OSR =

1
8

8
∑

i=1
ÔSR

i . Although this method can improve the performance of our model, the inference

time for each image is significantly increased because we need to run with eight images
instead of one image. Therefore, the self-ensemble strategy is not effective when applied in
practice, especially with high-resolution images.

3 Extensive Experiments

3.1 Quantitative Results of Lightweight Model

We compare our lightweight model (CPAT-light) to the state-of-the-art lightweight meth-
ods. In addition to PSNR/SSIM [18], we compare model size and computational complexity.
We report the number parameter for model size comparison and multiply-accumulate opera-
tions (evaluated on a 1280x720 HR image) for a fair computational complexity comparison.
Tab. 1 shows that CPAT-light outperforms the state-of-the-art methods. Specifically, CPAT-
light surpasses the current state-of-the-art method of lightweight SISR Omni-SR by up to
0.31dB on Urban100, which indicates our method is efficient and able to work well on dif-
ferent scales of model size. By enhancing the window size along the width and height of the
input feature maps in V-EWin and H-EWin, our method can extract more global contextual
information and relationships between the distant tokens, thereby improving performance of
model. CPAT-light outperforms current methods in terms of PSNR/SSIM metrics and main-
tains a model size and computational complexity similar to other methods. Specifically, the
number of parameters of CPAT-light is always less than 1M (939K) parameters for all scales,
while the #Mult-Adds is comparable to other methods. These results demonstrate that our
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method can perform well even with a lightweight version. These results show that enhanc-
ing window size still efficient for our lightweight model. Furthermore, leveraging frequency
features makes our method more robust.

Method Scale #Params #Mult- Set5 [2] Set14 [19] BSD100 [13] Urban100 [8] Manga109 [14]
Adds PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LAPAR-A [9]

x2

548K 171.0G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
SCET [22] 683K 70.5G 38.06 0.9615 33.78 0.9198 32.24 0.9006 32.38 0.9299 39.86 0.9821
FMEN [6] 748K 172.0G 38.10 0.9609 33.75 0.9192 32.26 0.9007 32.41 0.9311 38.95 0.9778
ASSLN [21] 692K 159.1G 38.12 0.9608 33.77 0.9194 32.27 0.9007 32.41 0.9309 39.12 0.9781
LKASR [7] 947K 141.0G 38.25 0.9614 34.17 0.9228 32.39 0.9023 33.10 0.9375 39.50 0.9786
Omni-SR [17] 772K - 38.29 0.9617 34.27 0.9238 32.41 0.9026 33.30 0.9386 39.53 0.9792
CPAT-light (Ours) 939K 143.3G 38.36 0.9618 34.31 0.9243 32.45 0.9031 33.62 0.9405 39.72 0.9795

LAPAR-A [9]

x3

594K 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
SCET [22] 683K 70.5G 34.53 0.9278 30.43 0.8441 29.17 0.8075 28.38 0.8559 34.29 0.9503
FMEN [6] 757K 77.2G 34.45 0.9275 30.40 0.8435 29.17 0.8063 28.33 0.8562 33.86 0.9462
ASSLN [21] 698K 71.2G 34.51 0.9280 30.45 0.8439 29.19 0.8069 28.35 0.8562 34.00 0.9468
LKASR [7] 947K 70.5G 34.74 0.9296 30.66 0.8481 29.30 0.8098 28.93 0.8674 34.45 0.9496
Omni-SR [17] 780K - 34.77 0.9304 30.70 0.8489 29.33 0.8111 29.12 0.8712 34.64 0.9507
CPAT-light (Ours) 939K 60.6G 34.80 0.9306 30.73 0.8495 29.36 0.8122 29.39 0.8751 34.76 0.9516

LAPAR-A [9]

x4

659K 94.0G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
SCET [22] 683K 70.5G 32.27 0.8963 28.72 0.7847 27.67 0.7390 26.33 0.7915 31.10 0.9155
FMEN [6] 769K 44.2G 32.24 0.8955 28.70 0.7839 27.63 0.7379 26.28 0.7908 30.70 0.9107
ASSLN [21] 708K 40.6G 32.29 0.8964 28.69 0.7844 27.66 0.7384 26.27 0.7907 30.84 0.9119
LKASR [7] 1026K 62.6G 32.63 0.8998 28.94 0.7894 27.78 0.7430 26.79 0.8068 31.42 0.9187
Omni-SR [17] 792K - 32.57 0.8993 28.95 0.7898 27.81 0.7439 26.95 0.8105 31.50 0.9192
CPAT-light (Ours) 939K 33.9G 32.65 0.9009 28.97 0.7905 27.83 0.7454 27.10 0.8152 31.60 0.9215

Table 1: Quantitative comparison with state-of-the-art lightweight methods. The best and
second-best results are marked in red and blue colors, respectively.

3.2 Extensive Qualitative Results for Base Model

Fig. 3 and Fig. 5 show more qualitative results for our base model (CPAT) and com-
parison with HAT. In the Fig. 3, for all images, our method provide better results both of
LAM attribution visualization and DI values. LAM visualizations and DI values show that
our method use more and wide range pixel during upscaling the patches that marked on the
green boxes. Fig. 5 demonstrates that our method can reconstruct HR images more clearly
and retain the SR image details better than HAT. Particularly, SR images of ”img_011” and
”img_060” in Urban100 generated by HAT can not keep some details of HR images whereas
our method can do that much better.

3.3 Extensive Ablation Study
Following [4, 5], we train x2 SR the model on DF2K (DIV2K [1]+Flicker2K [11]), and

test on Urban100 [8] for all experiments in this section. FLOPs is calculated on a 256x256
HR image. Results are reported in the Tab. 2, 3 and the better results are shown in bold.
Effective Receptive Field Analysis. For image super-resolution, enlarging receptive field
extract the global context information is crucial for HR image reconstruction. We use ef-
fective receptive field (ERF) as a toolkit to visualize the effectiveness of our proposed CPAT
compared to other SOTA methods. In Fig. 4, we visualize ERFs of RCAN, SwinIR, HAT and
CPAT on Urban100. We can make the following observations: 1) For CNN-based method,
the effective receptive field is limited (local ERF). By contrast, Transformer-based methods
can reach global ERFs. 2) Our CPAT is the only model that can achieve a significant global
effective receptive field, thus improving our model’s performance in SISR.
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Figure 3: Comparison of LAM between CPAT and HAT.

Figure 4: The Effective Receptive Field (ERF) [12] visualization for RCAN [20],
SwinIR [10], HAT [3] and our proposed CPAT on Urban100. A larger ERF is indicated
by a more extensively distributed dark area. Only the proposed CPAT achieves a significant
global effective receptive field.

Citation
Citation
{Luo, Li, Urtasun, and Zemel} 2016

Citation
Citation
{Zhang, Li, Li, Wang, Zhong, and Fu} 2018

Citation
Citation
{Liang, Cao, Sun, Zhang, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2021

Citation
Citation
{Chen, Wang, Zhou, Qiao, and Dong} 2023{}



TRAN, HUNG, KIM: ATTENTION & FREQUENCY LEARNING FOR SISR 5

Figure 5: Visual comparisons between CPAT and HAT.
#Channels 90 120 180 210

PSNR 33.64 33.95 34.26 34.35
SSIM 0.9404 0.9428 0.9448 0.9456
FLOPs 90.03G 152.22G 329.04G 443.66G

#Params 5.33M 9.25M 20.39M 27.61M

Table 2: Effect of number channels.

Effect of number channel. Effect of num-
ber channel on the performance’s the models is
shown in Tab. 2. If we gradually increase the
number of channels, the model’s performance
will continue to improve. This result shows that
our model is scalable and can perform well if we
downscale the model size. The biggest model (210 channels) reaches 34.35dB, whereas the
smallest one (90 channels) gets 33.64dB. However, it is worth noting that when the number
channel becomes too large, the improvement in the model’s performance does not increase
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significantly compared to the training cost required. Therefore, based on the performance
as well as the complexity of our model, we set the number channel for the base model to
be 180. This also helps us to compare fairly with state-of-the-art methods that also use 180
channels in these methods.

Structure PSNR SSIM #Params FLOPs
w/ SFIM-1 34.26 0.94484 20.39M 329.0G
w/ SFIM-2 34.20 0.94433 21.13M 330.9G
w/ SFIM-3 34.26 0.94486 20.96M 332.8G

Table 3: Effect of SFIM variants

Effect of SFIM variants. We propose three poten-
tial designs, shown in Fig. 6 of SFIM, from which
we select SFIM-1 as the optimal design, which
reaches 34.26dB in PSNR. It is similar to SFIM-
3 in terms of quantitative results, but simpler and
has the lowest floating-point operations per second
(FLOPs) and number of parameters. Tab. 3 shows
that SFIM-1 is an optimal design based on performance and complexity trade-offs, which
we choose for our base and lightweight models.

Figure 6: Three potential variants of SFIM. SFIM-1 is chosen for use in the base model.
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