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Abstract

The study of the health effects of Publicly Accessible Green Spaces (PAGS), such as
parks and urban greenways, has received increasing attention in environmental sciences
and public health research. However, the lack of relevant data and methods for PAGS
mapping limits this work. To our best knowledge, most of the existing studies of PAGS
mapping are manual, limited to small regions, and do not generalise geographically.

In this paper, we introduce a first-of-its-kind dataset - the Northern Ireland Pub-
licly Accessible Green Spaces (PAGS-NI) dataset. Unlike existing datasets that typi-
cally consider only visual remote sensing data, our PAGS-NI dataset combines high-
resolution, multi-band remote sensing data, geographical information data and activity
data with hand-verified PAGS ground truth. Using this dataset, we develop a semantic
segmentation model for automatic and scalable PAGS mapping that fuses these different
data sources. Our model is able to predict PAGS on unseen places given appropriate
training, which exceeds prior art. Furthermore, we show that our model trained solely
on Northern Ireland can generalise to PAGS prediction for areas in the United States.
Our model and dataset have the potential to advance large-scale PAGS studies in en-
vironmental science and public health research. Our dataset and code are available at
https://github.com/Ellenisawake/pags-ni.

1 Introduction
Publicly accessible green spaces (PAGS) are known to promote physical and mental health
while also providing increased opportunities for social inclusion and reducing inequali-
ties [10]. The World Health Organization (WHO) classify areas such as parks, greened
vacant lots, vegetated street-scapes, school yards, urban greenways, forests, and trails as
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Figure 1: System Overview. We propose a new PAGS-NI dataset combining imaging, map-
ping and activity information and build a semantic segmentation pipeline for PAGS mapping.

PAGS [4]. With most of the world’s population now living in towns and cities [11], auto-
mated mapping of urban PAGS is an important topic for environmental science and public
health [25]. Yet, this is an underdeveloped area of research due to practical challenges.

To the best of our knowledge, there is currently no public datasets existing for the auto-
mated PAGS mapping task. Existing methods for green space estimation [21] tend to rely on
the Normalised Difference Vegetation Index (NDVI) [14], which detects the presence of veg-
etation in a region using the ratio between red and near-infrared (NIR) satellite bands [32].
However, some regions with high NDVI, such as farmland, are not publicly accessible and,
therefore, do not elicit the same health and well-being benefits. Additional data sources such
as OpenStreetMap (OSM) [24] and data from physical activity trackers [17] are needed to
distinguish PAGS from other kinds of green areas.

In this paper, we investigate the new challenging task of segmenting publicly accessible
green space (PAGS), illustrated in Fig. 1. Our contributions can be summarised as threefold:
1) we introduce a new PAGS-NI dataset consisting of multiple data sources, including multi-
band satellite imagery (visual), OSM geographical and activity data (semantic), as well as
verified ground truth; 2) we develop a model that fuses, for the first time, visual and semantic
data sources for accurately mapping PAGS; 3) finally, we demonstrate the strong generali-
sation capability of our model to distant geographical locations. Our proposed dataset and
model can be used as a foundation to boost research on this relatively new problem and bring
insights into various related topics such as environmental science and public health.

2 Related Work
Semantic Segmentation for Remote Sensing. Qin et al [27] present a review of land cover
classification, including semantic segmentation of remote sensing images. They identify
two main challenges: dataset quality and domain shift across geographical regions, which
affect global-scale urban green space mapping [30]. Dedicated datasets and challenges have
recently been released [3, 7]. For instance, OpenSentinelMap [13] introduces a per-pixel
annotated land usage data with labels derived from Open Street Map. They show that an off-
the-shelf convolutional network trained on this dataset can perform semantic segmentation at
a global scale. The typical approach to performing semantic segmentation of remote sensing
images is to apply a U-Net-based architecture [12]. However, the data tends to be imbal-
anced, with the background class outnumbering the sparse classes of interest, limiting the
naive application of this approach. The foreground-aware relation network (FarSeg) [38] for
geospatial segmentation with significant foreground-background imbalance. Xie et al [34]
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proposed a multi-task method which conducts simultaneous key point detection and pixel
segmentation for road extraction in satellite images.
Urban Green Space Mapping. Most existing green space studies focus on Urban Green
Space mapping (UGS), which refers to any type of green space in urban areas without con-
sidering its use. Therefore, much of the work mentioned below is not directly compara-
ble with our proposal. The earliest approaches for UGS mapping tended to rely purely on
NDVI [28]. Later methods used classical machine learning to combine multiple satellite
bands [15, 16, 21]. Recently, deep network approaches incorporating various contextual
data sources have dominated [9, 14, 30]. Among the recent approaches, the U-Net [29]
and similar encoder-decoder architectures [21] are popular choices for segmentation tasks.
Zhao et al [37] used a U-Net model to map urban green space in 16 cities. Liu et al [21]
compare support vector machine (SVM), fully connected networks (FCN), and U-Net with
multi-spectral data input. They find DeepLabv3plus, a U-Net-style encoder-decoder model,
performs best. Xu et al [35] fuse multi-spectral remote-sensing data captured in summer
and winter. The change in vegetation between the seasons provides information unavailable
at a single point in time. Like our proposed method, Ludwig et al [23] and Chen et al [2]
use OSM and satellite data. However, unlike us, they use OSM data to compensate for low-
resolution satellite imagery. In Chen et al [2], OSM data was used to derive ground truth
and as an input to the model. Both above works did not consider generalization as they only
tested on one city. A common issue for UGS mapping is consistent ground truth availabil-
ity, especially across countries. While several public UGS datasets have become available
in recent years, the definition of UGS is often inconsistent between jurisdictions, posing a
challenge for consistent evaluation [18]. OpenStreetMap land usage tags have frequently
been used as ground truth for UGS mapping [14]. While OSM tags have known regional
variations [22], they are one of the more reliable indicators of UGS at a global level [14].

3 Dataset

In this section, we introduce our newly proposed PAGS dataset, PAGS-NI1, which covers
a total area of 2216.641 square kilometres from 18 cities/towns (details in supplementary).
Greenness and accessibility are the two key characteristics of PAGS. Our dataset incorporates
semantic information on accessibility in addition to visual satellite data. This enables PAGS
mapping, which is not possible with existing NDVI-based UGS datasets and methods [14].

3.1 Visual Data

We use PlanetScope satellite data2 due to the availability of high-resolution, frequently up-
dated, multi-band images. The red, green, blue, and Near-Infrared (NIR) bands are used as
similarly in relevant studies [15, 16], while we also calculate the NDVI index following the
guidance from PlanetScope publisher. Our pre-processing pipeline includes four main steps:
coordinate system alignment, satellite band extraction and normalisation, NDVI computation
and patch vision. More details are explained in the supplementary material.
Band extraction and normalisation. We use the Planet 4-band analytical surface reflectance
data, which includes the red, green, blue and Near-Infrared (NIR) channels. One prominent

1Dataset available at https://github.com/Ellenisawake/pags-ni.
2https://developers.planet.com/docs/data/planetscope/

Citation
Citation
{Rhew, Vanderprotect unhbox voidb@x protect penalty @M  {}Stoep, Kearney, Smith, and Dunbar} 2011

Citation
Citation
{Kranj{£}i{¢}, Medak, {ı}upan, and Rezo} 2019

Citation
Citation
{Labib and Harris} 2018

Citation
Citation
{Liu, Yue, Shi, Ji, and Deng} 2019

Citation
Citation
{Huerta, Y{é}pez, Lozano-Garc{í}a, Guerraprotect unhbox voidb@x protect penalty @M  {}Cobian, Ferrinoprotect unhbox voidb@x protect penalty @M  {}Fierro, deprotect unhbox voidb@x protect penalty @M  {}Le{ó}nprotect unhbox voidb@x protect penalty @M  {}G{ó}mez, Cavazosprotect unhbox voidb@x protect penalty @M  {}Gonzalez, and Vargas-Mart{í}nez} 2021

Citation
Citation
{Ju, Dronova, and Delcl{ò}s-Ali{ó}} 2022

Citation
Citation
{Shi, Liu, Marinoni, and Liu} 2023

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Liu, Yue, Shi, Ji, and Deng} 2019

Citation
Citation
{Zhao} 2022

Citation
Citation
{Liu, Yue, Shi, Ji, and Deng} 2019

Citation
Citation
{Xu, Zhou, Wang, Wang, Li, Wang, and Wang} 2020

Citation
Citation
{Ludwig, Hecht, Lautenbach, Schorcht, and Zipf} 2021{}

Citation
Citation
{Chen, Weng, Tang, Liu, Zhang, and Bilal} 2021

Citation
Citation
{Chen, Weng, Tang, Liu, Zhang, and Bilal} 2021

Citation
Citation
{Liao, Zhou, and Jing} 2021

Citation
Citation
{Ju, Dronova, and Delcl{ò}s-Ali{ó}} 2022

Citation
Citation
{Ludwig, Fendrich, and Zipf} 2021{}

Citation
Citation
{Ju, Dronova, and Delcl{ò}s-Ali{ó}} 2022

Citation
Citation
{Ju, Dronova, and Delcl{ò}s-Ali{ó}} 2022

Citation
Citation
{Kranj{£}i{¢}, Medak, {ı}upan, and Rezo} 2019

Citation
Citation
{Labib and Harris} 2018

https://github.com/Ellenisawake/pags-ni


4 GAO ET AL.: LEARNING TO SEGMENT PUBLICLY ACCESSIBLE GREEN SPACES

issue in the raw satellite data is over-saturated pixels, which may be caused by specular re-
flection from strong surface reflectance materials such as glass or water. These over-saturated
pixels suppress the rest of the pixels during normalisation, which can cause problems for our
model. To remove these outliers, we perform thresholding of the raw data. For each image,
we obtain the histogram of all pixel brightness values depending on the band. A threshold
value that encompasses 99% of the pixel brightness values in the histogram is calculated for
the band. We calculate a combined threshold for all the visible light bands (RGB) to preserve
the colour balance. A separate threshold for the NIR band is obtained because the NIR value
range differs significantly from the others. We clip values using the thresholds for all the
bands, then normalise all pixel values to the range [0-255].
Patch division. The satellite data we use has a pixel size of around 3 metres and the resulting
image for a city could be of huge size, e.g., 6550×4990. This is generally too large for most
neural network models. Therefore, to prepare the data as input to the model, we crop the
raw satellite images into non-overlapping patches of roughly 550×550 pixels. The 550×550
patch size allows for geometric data augmentation to be applied before cropping to 512×512
for input to the network during training and testing.

3.2 Semantic Data
The role of the semantic data source is to provide evidence of accessibility for the model.
We consider two sources of accessibility data: OpenStreetMap land usage annotations and
activity maps from GPS track points.
OpenStreetMap. OpenStreetMap is a crowd-sourced worldwide geographical data pool,
with geometries at varying levels of granularity. The semantic information in the OSM tags,
derived from local expert knowledge, provides evidence of both greenness and accessibility.
However, as pointed out in [23], one of the main drawbacks of OSM data is its lack of
consistency and credibility; therefore, OSM cannot be used alone to determine PAGS and
must instead be combined with other credible sources of evidence.

Building on previous work using OpenStreetMap data to map UGS (different from PAGS),
we select a set of OSM tags, shown in the supplementary material, as green space indicators
[18]. We study two different representations of the data for input to the model. Firstly, a
single binary map where all polygons containing a relevant OSM tag are filled with ones and
all other areas with zeros. Secondly, individual binary maps for each tag. Our OSM maps are
plotted in the same CRS as the satellite imagery, giving a one-to-one pixel correspondence
between the binary OSM maps and the satellite imagery.
Activity map. The GPS track data from OSM provides an additional source of information
on accessibility. Users upload their exercise GPS traces, which are used to build a global
map showing where different activities, such as running, walking and cycling, occur. The
map provides evidence of whether an area is accessible or not, as shown by the density of
activities. However, the data is also noisy and does not directly distinguish green spaces
from non-green areas. We download the GPS data in the form of discrete points, then plot
the points as a binary map in the same CRS as the satellite imagery to be used as an additional
input data source for PAGS mapping.

3.3 Ground Truth
Ground truth PAGS data is required to train a model to automatically map PAGS areas.
Recently, Outscape Northern Ireland released a public green space map, the GreenspaceNI

Citation
Citation
{Ludwig, Hecht, Lautenbach, Schorcht, and Zipf} 2021{}

Citation
Citation
{Liao, Zhou, and Jing} 2021



GAO ET AL.: LEARNING TO SEGMENT PUBLICLY ACCESSIBLE GREEN SPACES 5

Map3, which covers the whole geographical area of Northern Ireland (NI). Our work will,
therefore, mainly focus on Northern Ireland due to the availability of this data. We build a
ground truth PAGS dataset containing the 18 most populous cities/towns within the GreenspaceNI
Map, with details of the locations given in the supplementary. Manual checks were per-
formed to confirm that the GreenspaceNI Map data aligns with the satellite and other data
sources.

3.4 Data Splits
Our dataset consists of 857 non-overlapping patches, which are then split into geographi-
cally non-overlapping training, validation and testing sets. Specifically, we have 100 patches
from three cities for validation and 97 patches from another three cities for testing, while
patches from the remaining cities are used in training (details of the splits are given in the
supplementary). This allows for a rigorous evaluation of model performance and allows for
testing generalisation to geographical areas completely outside of the training set.

4 Method
Model. We approach PAGS mapping via the lens of semantic segmentation [36]. Our mod-
els take several visual and semantic channels as input and then learn to predict a map of
PAGS areas. Applying deep neural networks to remote sensing tasks is challenging due to
the lack of labelled data, leading to over-fitting. To help generalisation, we use a ResNet-50
pre-trained on BigEarthNet-MM [31] as the encoder (feature extractor) backbone for all ex-
periments. We explore two network architectures built on this feature extractor: UNet [29],
which has been shown superiority for practical real-world remote sensing tasks such as in
the SpaceNet challenges [33]; and FarSeg [38], a recent state-of-the-art for geo-spatial ob-
ject segmentation on remote sensing data. As there are few specialised green space mapping
models to build upon, we select UNet [29] and FarSeg [38] as our two base network archi-
tectures due to their relatively low resource requirements and previously demonstrated high
performance on remote sensing data. With the FarSeg model, the pre-trained ResNet-50 is
used directly as the model encoder. When using the UNet model, the pre-trained ResNet-50
is used in the down blocks. UNet has about four times the number of parameters of the
FarSeg model and therefore, takes up more memory space and is slower to train. However,
from a results point of view, it demonstrates better generalisation capability, which we will
illustrate in more detail in §5. All models accept input patches of size 512x512 pixels. To
help cope with the class imbalance between PAGS and non-PAGS pixels, all our models are
trained using Focal Loss [20].
Data Augmentation. During training, we apply data augmentation via horizontal flipping,
random cropping and small affine transformations. During testing, we use the centre crop
from each patch to preserve the original aspect ratio and fine image details.

Furthermore, we explore the use of data augmentation to address the class imbalance is-
sue, which is a big challenge for automatic PAGS mapping. As usual in many urban settings,
PAGS areas are rarer than non-PAGS areas. We find that the recently developed copy-paste
augmentation (Copy-Paste) [6] can help create more PAGS samples for training. Copy-paste
was proposed for instance-segmentation in natural images, where object instances are ex-
tracted and randomly pasted onto images to generate additional virtual samples. It has been

3https://www.out-scape.com/news/greenspaceni-map/
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Input image

Before BeforeAfter After

Ground truth: PAGS class

Figure 2: Copy-Paste example. Left: input image before and after Copy-Paste, right: ground
truth mask for PAGS class (white for true and black for false) before and after Copy-Paste.
Red lassos highlight the pasted PAGS pixels.

shown to substantially improve the performance on common daily life object segmentation
benchmarks such as COCO [19], while also seen to work well on medical images[1]. Yet to
our knowledge, so far there has been no application of this method to remote sensing data.
Motivated by the above and the lack of positive samples in learning a good model for PAGS
mapping, we explore the use of copy-paste for PAGS semantic segmentation. To do this,
we randomly select PAGS areas during training and copy-paste them into non-PAGS map
areas, updating all bands and the ground truth. We also add a positive sampling strategy to
the original implementation to guarantee positive PAGS samples are created. This increases
dataset diversity and helps alleviate the class imbalance issue. An example of this augmen-
tation is shown in Fig. 2, where we can see that areas of PAGS significantly increased after
the augmentation. Note that, an augmentation scheme like this might not guarantee contex-
tual rationality between the background and the foreground, such as the giraffe appearing
on the football field example in the original Copy-Paste paper. However, the method is still
proven beneficial for pixel-level segmentation tasks because the lack of training data and
labels poses a much larger challenge when training deep neural networks.

5 Experiments
In this section, we evaluate our proposed pipeline using the PAGS-NI dataset.
Data. All the experiments are conducted using our PAGS-NI dataset, except for the geo-
graphical generalisation test in §5.3. Specifically, for the training set we apply overlapping
random crops instead of non-overlapping crops to increase the training sample diversity.
Evaluation. For fair evaluation under data imbalance, we mainly use F1 score (DICE) and
Jaccard Index (IoU). Both metrics consider precision and recall, making them suitable for
data-imbalanced settings. We also calculate two pixel-accuracy metrics: accuracy for PAGS
foreground pixels (FG) and accuracy for all pixels (All). The former is more important in
the PAGS mapping task as it focuses on our class of interest. For each experiment, we report
the best model’s performance on the test set.
Training. During training, we use a batch size of 8 unless otherwise specified, with a learn-
ing rate of 0.001 for pre-trained parameters and 0.01 for other parameters. All models are
trained for 80 epochs with the model with the best F1 score on the validation set selected as
the best model. We use Pytorch [26] and run all experiments on a single Nvidia RTX A5000
GPU. Generally, UNet models take about 17GB of memory and finish training in about one
hour, while FarSeg models use about 13GB of memory and train in about half an hour.
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Data sample Ground truth Ours RGB All channels

Figure 3: Qualitative results. Each row is for one example. 1st column: data sample, OSM
greenspace areas are plotted in blue, Activity is in red; 2nd column: Ground truth, where
green indicates PAGS and grey means non-PAGS; 3rd to 5th column: prediction from: our
proposed method using NDVI+OSM+Activity channel combination, RGB and all the seven
channels. Best viewed in color.

5.1 Channel Combination
Our dataset contains seven available input channels: five visual bands - R, G, B, NIR and
NDVI - which are all data sources for greenness in PAGS mapping and two semantic bands
- OpenStreetMap and Activity info which hint at the accessibility of spaces. There are more
than 100 possible combinations of the seven channels, too many to try due to limited com-
puting resources. Instead, we evaluate channel combinations guided by the literature and
an understanding of the information available in each channel. Based on the input used in
existing literature for UGS mapping [16, 21, 37], two channel combinations are considered
as baselines: RGB, which is the most commonly adopted visible light bands in many com-
puter vision tasks, and RGB+NDVI where NDVI has been a main criterion for green space
estimation in prior arts as introduced in §2. Note that these existing methods consider only
visual data sources without the semantic data source. We propose that the latter is a key
element in accurate PAGS segmentation. Since accessibility is a critical part of the definition
of PAGS, it is essential to compare combinations with both greenness (the five visual bands)
and accessibility (the two semantic channels) against the baselines with greenness data only.

The results are shown in Table 1. We observe that the performance of baseline methods
using visual data sources only are not satisfying unless combined with the semantic data
source. This coincides with our motivation that the accessibility information provided by the
semantic data is crucial in PAGS mapping. Overall, the best-performing channel combina-
tion is NDVI+OSM+Activity, which provides the key information (greenness and accessi-
bility) for PAGS mapping. While we see that some other combinations, such as all-channels,
also provide greenness and accessibility information, however, they also include additional
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Channels Pixel Acc %

R G B NIR NDVI OSM Activity F1 Jaccard FG All

Baselines
✓ ✓ ✓ 0.437 0.280 32.13 95.43
✓ ✓ ✓ ✓ 0.380 0.234 23.98 89.39

✓ ✓ ✓ ✓ 0.029 0.014 1.28 95.26
✓ ✓ ✓ ✓ 0.228 0.128 9.62 95.53
✓ ✓ ✓ ✓ 0.546 0.376 64.50 94.20
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.578 0.407 63.38 94.93
✓ ✓ ✓ 0.582 0.411 57.06 95.47
✓ ✓ ✓ 0.612 0.441 69.32 95.20
✓ ✓ ✓ ✓ 0.627 0.457 66.35 95.64

✓ ✓ 0.648 0.479 66.42 96.09
✓ ✓ ✓ ✓ 0.648 0.480 60.93 96.30

✓ ✓ 0.651 0.483 64.70 96.18

✓ ✓ ✓ (Ours) 0.720 0.562 68.33 93.75

Table 1: Comparison of different channel combinations.

Model OSM F1 Jaccard Pixel Acc %
Channel(s) FG All

UNet Single 0.720 0.562 68.33 93.75
Multi 0.716 0.558 75.65 92.93

FarSeg Single 0.694 0.531 60.29 93.83
Multi 0.759 0.612 71.68 94.67

Table 2: Test results for different network
architectures and OSM channel input for-
mats.

Method F1 Jaccard Pixel Acc%
FG All

Direct OSM mapping 0.691 0.528 80.64 91.53
Our model UNet 0.720 0.562 68.33 93.75

Our model FarSeg 0.759 0.612 71.68 94.67

Table 3: Comparison of PAGS map-
ping performance between directly map-
ping the OSM green space areas and our
model.

redundant information, and their results are not as good as NDVI+OSM+Activity. NDVI
is specifically designed to detect green plants; therefore, the network can directly use this
information without needing to rediscover the correct channel combinations from scratch.
Among the two semantic data channels, OSM is seen to benefit more as the combination of
RGB+OSM gives much better results than RGB+Activity. Qualitative analysis of different
model outputs is shown in Fig. 3, where we observe that the proposed NDVI+OSM+Activity
input is able to robustly capture most of the PAGS areas in different geographical locations.
More visual results can be found in the supplementary.

5.2 Performance Analysis

OSM Channel Format. We see from results in Table 1 that OSM data is critical in accurate
PAGS mapping. Next, we study the effect of presenting OSM data to our model in either sin-
gle or multi-channel formats alongside the other data channels. Single channel means OSM
data is in a single binary input channel as the union of all geographical areas containing the
hand-selected green space indicator tags [18]. Multi-channel means that we have one chan-
nel per tag. The comparison between different channel formats are shown in Table 2. The
effect of the OSM data channel format differs for UNet and FarSeg. With the UNet model,
the difference between both formats is small. However, while FarSeg is more sensitive to
the number of OSM channels, and it performs significantly better with multi-channel input.
This indicates that how OSM data is input needs to be considered together with the network
architecture used.
Comparison with Direct OSM Mapping. Previous work in the literature has explored
directly using OSM green space tags as ground truth for UGS mapping [13]. In this experi-
ment, we compare the PAGS mapping performance of a baseline system using Direct OSM
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Method F1 Jaccard Pixel Acc %
FG All

Basic aug 0.709 0.550 76.16 92.39
Basic aug + 0.7200.011↑ 0.5620.012↑ 68.33 93.75Copy-Paste

Table 4: Effect of adding Copy-Paste in
addition to basic augmentation. Basic
aug: horizontal flipping and affine trans-
formation only.

Model Testing Data Location
N.I. (Test set) United States

FarSeg
RGB 0.501 0.022

RGB+NDVI 0.488 0.098
Ours 0.759 0.271

UNet
RGB 0.437 0.003

RGB+NDVI 0.380 0.000
Ours 0.720 0.444

Table 5: Geographical generalisation re-
sults (F1 score) from N.I. to the US. Ours:
NDVI+OSM+Activity. All using Copy-
Paste augmentation.

Mapping against our proposed method. The Direct OSM Mapping system returns a binary
map of the union of all geographical areas containing the hand-selected green space indicator
tags [18], listed in the supplementary material. The results are shown in Table 3. Although
without any learning at all, using direct OSM greenspaces can help find PAGS with a reason-
able level of performance, our models can accurately identify significantly more PAGS areas
than the hand-input Direct OSM greenspaces, with up to 7% better F1-score for our best
model. Also as mentioned in §3.2, although there is a good amount of fine-grained OSM
data for Northern Ireland which is used in the test, the coverage and quality of OSM data for
other countries in the world may not be as good. Our proposed method has better potential
of expanding the study regions to much wider parts around the globe than simply relying on
the manual-curated OSM data.
Copy-Paste Augmentation. The benefit of applying Copy-Paste to the model can be seen
from Table 4, that it help improve both F1 score and the Jaccard compared to not using it.

5.3 Geographical Generalisation

We now examine the generalisation of our model to regions outside Northern Ireland. Ge-
ographical generalisation to distant locations has long been a difficult problem, even from
one city to another in the same country [8]. Many existing green space mapping methods
were only developed and tested for small regions, e.g., within a city [23]. Here, we conduct
a challenging test of our proposed model: training purely on the training set of PAGS-NI
and testing on 213 patches from three United States cities (details of which are given in
supplementary material) without any modification of the model. To verify the results, we
use protected green areas ground truth from the PAD-US dataset [5], which is the closest to
PAGS that we could find for United States. The focus of the PAD-US dataset was originally
bio-diverse areas, and it was expanded in recent years to include open public green spaces.
This differs from our PAGS-NI dataset, of publicly accessible green spaces. Consistent
worldwide PAGS ground truth data is very difficult, if not impossible, to obtain. Therefore,
while PAD-US is not a strict match to the PAGS mapping task considered in this work, we
believe it is still a valuable resource for the evaluation of PAGS generalisation.

The test data comes from three different US cities (details in the supplementary). Re-
sults are shown in Table 5. We compare our best model, NDVI+OSM+Activity, against the
two baselines, RGB and RGB+NDVI, all trained on the same PAGS-NI training set. When
tested within the same country (the NI test set), our proposed model performs best as shown
previously. When tested on the United States cities, the performances of all models dropped
significantly. The geographical distance between the two countries and the difference in the
ground truth definitions may be the reason why the baseline models perform so poorly on
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United States cities. However, again, our proposed model performs significantly better than
the baselines at a reasonable level. For context, while not directly comparable, we note that
a network designed for cross-city general object segmentation achieved a mean F1-score of
0.352 when generalising between cities within the same country [8]. The relative success
of our proposed PAGS model underlines the importance of choosing appropriate inputs, in-
cluding both visual and semantic data sources. Meanwhile, the difficulty of generalising to
geographically distant regions remains a huge challenge for PAGS mapping methods. We
leave this topic for future work.

6 Conclusion
In this paper, we study the under-explored problem of automatically mapping publicly ac-
cessible green spaces (PAGS). We introduce a novel dataset, PAGS-NI, that provides data
from both visual and semantic sources, including satellite imagery, OpenStreetMap data and
Activity Map data, with authorised ground truth. We propose a new semantic segmentation
model that, for the first time, combines the aforementioned data sources for accurate PAGS
mapping. We perform extensive experiments to assess the optimal way to utilise the multiple
data sources. Our final model outperforms existing methods from the literature, especially
in the challenging task of generalising to distant geographical regions. Our work has great
potential to benefit various research areas including environmental science and public health.
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