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Abstract
While current state-of-the-art human pose estimation methods have demonstrated

remarkable performance, they frequently suffer from a significant parameter and compu-
tation overhead, resulting in slow inference speeds. For this issue, we propose a novel
approach to knowledge distillation in lightweight human pose estimation. In previous
knowledge distillation methods, the strategies in the cross-stage distillation distillation
overlooked semantic mismatches caused by the differing complexities of teacher and
student networks, potentially leading to negative regularization. To address this issue,
we propose a novel method based on the cross-stage knowledge distillation framework.
In the cross-stage knowledge distillation process, we transform student features in dif-
ferent stages through multiple receptive field feature transformations, by expanding the
receptive fields of student features to better align them to the receptive fields of teacher
features. We compute the similarity matrix between student and teacher features. By
associating the features of both, we obtain cross-attention weights to facilitate effec-
tive cross-layer distillation interaction. At the output stage of the model, we replace
the heatmap-based keypoint representation method with a classification coordinate-based
approach, reducing the inference memory by 20% and speeding up inference time. Ad-
ditionally, the vanilla knowledge distillation is performed on the output horizontal and
vertical coordinates. Extensive experiments on the MPII and COCO datasets validate the
effectiveness of our approach.

1 Introduction
Human Pose Estimation (HPE), as one of the fundamental tasks in computer vision, is widely
applied in human behavior recognition, human-object interaction recognition, and human-
computer interaction [3, 15, 28, 30]. Existing research shows that high-precision human pose
estimation models often require larger backbone networks, more computational resources,
and inference memory, making them difficult to deploy on resource-constrained mobile de-
vices. To reduce computational costs, lightweight backbone networks such as MobileNet
[12] and ShuffleNet [41] have significantly reduced the model’s computational parameter
volume, but they have deficiencies in inference accuracy. Therefore, we address this issue
by adopting the knowledge distillation approach.

© *Corresponding author.
2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Cao, Simon, Wei, and Sheikh} 2017

Citation
Citation
{Li, Zhang, Wang, Yang, Yang, Xia, and Zhou} 2021{}

Citation
Citation
{Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Wei, Ramakrishna, Kanade, and Sheikh} 2016

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018



2 XU ET AL: KNOWLEDGE DISTILLATION ON HUMAN POSE ESTIMATION

Knowledge distillation [8] is a technique used to transmit information from a large
teacher network to a small student network. Previous methods of human pose estimation
distillation generally involve feature distillation at the layer-to-layer and block-to-block lev-
els [10, 25, 39], capturing rich knowledge by distilling specific representations of the gener-
ated feature maps to achieve performance improvements. However, the intermediate layers
of teacher and student networks often have different model complexities, and distillation
strategies in cross-stage may lead to semantic mismatches when distilling features at those
layers, thereby negatively affecting the learning process of the student network. In this pa-
per, we further explore the role of knowledge distillation in pose estimation based on the
cross-stage knowledge distillation. The experiments are designed by jointly utilizing multi-
layer features in the intermediate layers of teacher and student models, as well as expanding
the receptive field of the student network . Attention is used to adaptively allocate weights
in multi-layer feature distillation to reduce the negative regularization effects caused by dif-
ferent features. In the final part of the network, we replace the Heatmap-based head with a
SimDR-based head [16], decoupling coordinate representations to replace heatmap regres-
sion coordinates, reducing computational and memory overhead in the upsampling . In the
experiment, we Generate the supervised signal using a 1D gaussian distribution. Based on
this, vanilla knowledge distillation [11] is applied to the outputs of the teacher and student
networks. The contributions of this paper are as follows:

• We introduce a novel technique for cross-stage knowledge distillation in pose estima-
tion, which involves combining multi-layer feature distillation with cross-attention weight
allocation and expanding the receptive field of the student feature maps. This approach aims
to reduce the negative regularization effects caused by semantic mismatches during distilla-
tion.

• In terms of complexity and speed, we achieve state-of-the-art performance through
extensive experiments on the COCO and MPII human pose estimation datasets.

2 Related Work
2.1 Lightweight Human Pose Estimation

Lightweight human pose estimation, as a part of HPE is essential in scenarios with resource-
constrained devices. One way to achieve model lightweighting is to borrow feature extraction
modules from general lightweight models [12, 19, 41]. while maintaining high-resolution
feature maps. LiteHRNet [38] introduces shuffle block to lighten the model, Efficient pose
[9] introduces a large number of depth separable convolutions in the basic feature extraction
module design process. Such methods significantly reduce the number of model parameters
and computational complexity. Another way is to abandon keypoint heatmaps. The tradi-
tional heatmap-based methods generate Gaussian heatmaps as labels using a 2D Gaussian
distribution, requiring multiple upsampling layers to restore feature map resolution from low
to high, resulting in greater computational costs. The regression method [2] uses neural net-
works to directly regress keypoint coordinates. Faster Pose [7] designs an RCE loss function
to improve model accuracy. RLE [14] uses maximum likelihood estimation to develop ef-
ficient and effective regression-based methods. The SimDR [16] reformulates HPE as two
classification tasks for horizontal and vertical coordinates. It can omit additional refinement
post-processing and, in certain configurations, eliminate upsampling layers, thus providing
a simpler and more efficient approach for HPE. The overall architecture of our network, as
show in Fig.2, replacing the heatmap-based head [40] with a SimDR classification head not

Citation
Citation
{Gou, Yu, Maybank, and Tao} 2021

Citation
Citation
{Heo, Kim, Yun, Park, Kwak, and Choi} 2019

Citation
Citation
{{Romero}, {Ballas}, {Ebrahimi Kahou}, {Chassang}, {Gatta}, and {Bengio}} 2014

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Li, Yang, Liu, Zhang, Wang, Wang, Yang, and Xia} 2022

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Ma, Zhang, Zheng, and Sun} 2018

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Yu, Xiao, Gao, Yuan, Zhang, Sang, and Wang} 2021

Citation
Citation
{Groos, Ramampiaro, and Ihlen} 2021

Citation
Citation
{Bulat and Tzimiropoulos} 2016

Citation
Citation
{Dai, Shi, Liu, Wang, Liu, and Mei} 2022

Citation
Citation
{Li, Bian, Zeng, Wang, Pang, Liu, and Lu} 2021{}

Citation
Citation
{Li, Yang, Liu, Zhang, Wang, Wang, Yang, and Xia} 2022

Citation
Citation
{Zhang, Zhu, Dai, Ye, and Zhu} 2020



XU ET AL: KNOWLEDGE DISTILLATION ON HUMAN POSE ESTIMATION 3

only reduces memory overhead and speeds up inference time but also yields improved results
by obtaining horizontal and vertical coordinates through vanilla distillation output.

2.2 Knowledge Distillation
Knowledge distillation is a model compression method that does not alter the network struc-
ture. Hinton et al. [11] first proposed supervising a small student network using soft labels
generated by the teacher network’s outputs. This method created for classification tasks is
called logit-based distillation. This series of works [10, 13, 33, 34] focuses on the knowl-
edge of the final output labels, without the need to consider the internal structure or feature
representation of the neural network model, directly utilizing the model’s predicted output
for samples. Feature-based knowledge distillation refers to using the intermediate features
of the teacher network as soft labels. FitNet [25] uses the intermediate layer features of
the teacher model’s network to supervise the student model and make it fit these interme-
diate features. Transitioning from logit-based distillation to feature-based distillation, these
approaches transfer knowledge from intermediate layers [35, 37] and extend distillation tech-
niques to a variety of tasks including detection [5, 36], segmentation [26], and others.

In recent times, knowledge distillation has been effectively employed in human pose es-
timation [17, 17, 21]. However, in the process of using a teacher model to guide a student
model, inevitable negative regularization effects arise due to feature mismatch when conduct-
ing Layer-to-Layer, Block-to-Block distillation with teacher-student networks of different
complexities. Therefore, in the feature-level distillation stage of our network, we designed a
distillation module based on multi-layer and multi-receptive field guidance.

3 Method

3.1 Pose Estimation Framework with Cross-stage KD
Traditional cross-stage knowledge distillation methods allow student models to learn from
multiple stages of the teacher model, thereby enhancing the performance and generaliza-
tion ability of the student model. However, these methods often fail to fully consider the
structural differences between teacher and student models, which may lead to inefficient
learning and increased difficulty. With the introduction of the Knowledge Review approach
[4], models can balance the learning of shallow and deep knowledge by continuously review-
ing shallow knowledge during training, making it more suited to the structure of the student
model. Therefore, this paper adopts a framework based on Knowledge Review, introducing
cross-stage knowledge distillation, using HRNet as the teacher network and LiteHRNet as
the student network, as illustrated in the Fig.1. Based on the cross-stage structure, we employ
the multiple reception field transform module(MFT) during the feature distillation phase to
effectively expand the receptive field of the output features of the student network. In the
multi-layer distillation process, the distillation of shallow features and deep features share
the same weights, which may inevitably lead to negative regularization effects as the network
depth increases. Therefore, we have designed a cross-attention weight allocation module in
the network to dynamically adjust the distillation weights between different stages. We re-
place the heatmap-based head with a SimDR-based classification head, as shown in Fig.2.
Furthermore, by utilizing the horizontal and vertical coordinates of keypoints obtained from
classification, we conduct teacher-student network distillation on vanilla knowledge distilla-
tion.
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Figure 1: An overview of the proposed Knowledge Distillation framework

Figure 2: Simple Decoupled coordinate Representation

In our distillation process, each stage of the teacher model is strategically designed to
hierarchically guide the corresponding and subsequent stages of the student model. This
ensures a comprehensive and gradual transfer of knowledge, enabling the student network to
continuously review the shallow features from the teacher throughout the learning process.
In general, the loss in the cross-stage distillation is initially expressed as

L f kd =
L

∑
l=1

M

∑
m=l

D(Ftl − falign(Fsm)) (1)

where Ftl denotes the teacher features from stage l, and Fsm denotes the student features from
stage m, where L and M denote the number of stages in the teacher and student networks. We
use a transformation falign to match the dimensionality of the student features to that of the
teacher features. The Mean Squared Error (MSE) loss is employed as the distance function
D between the student features and the teacher features.

3.2 KD with Multiple Reception Fields in HPE
In the process of knowledge distillation, selecting an appropriate feature transformation strat-
egy is crucial for enhancing the performance of the student network. In Review KD, a pool-
ing pyramid module is employed to process the outputs from both the teacher and student
networks, segregating the features into different levels of contextual information for loss
computation. However, in the pose estimation distillation framework, the teacher network
is often more complex than the student network, and larger window pooling operations may
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lead to the loss of significant spatial information. Therefore, we have designed a multiple
reception field transform module in our network, which incorporates multi-size convolution
and pooling operations. This module increases the receptive field of the student features
during multi-stage distillation, allowing the student network to perceive contextual informa-
tion over a larger area and better capture the interrelationships and spatial layouts of various
joints in complex poses.

As shown in Fig.3, in the module MFT, features from various stages of the student net-
work are considered. When the dimensions of the output features from different stages of the
student network do not align with those of a specific stage of the teacher model, Transposed
Convolution is used to adjust the size of the student feature maps. Additionally, 1 × 1 con-
volutions are employed to align the channels, thereby facilitating the alignment of student
features with teacher features. Distillation is then conducted through branches with multiple
reception fields, allowing for effective knowledge transfer from the teacher’s features.

(a) (b)
Figure 3: (a) Multiple reception field feature transform(MFT). (b) Weight allocation. Mul-
tiple layers’ similarity matrices are computed to assign the attention weight.

3.3 KD with Adaptable Cross-stage Learning Weight in HPE
Consequently, in the process of stage-to-stage or layer-to-layer distillation, as the network
depth increases, negative regularization effects may occur due to feature mismatch between
the corresponding teacher and student networks.

However, in our approach, based on the cross-stage knowledge distillation framework,
we dynamically adjust the distillation weights during the teacher-to-student guidance pro-
cess across different stages through cross-stage weight allocation. The weight allocation
module dynamically adjust the cross-stage distillation process by leveraging the similarity
matrix [27] between feature maps to adaptively allocate the loss weights γ(sm, tl) through
self-attention, thereby mitigating negative effects.

L f ea =
L

∑
l=1

M

∑
m=l

γ(sm, tl)D(Ftl − falign(Fsm)) (2)
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Where L represents the number of stages in the teacher network, and M represents the num-

ber of stages in the student network,
L
∑

l=1

M
∑

m=1
γ(sm, tl) = 1.

In order to address the negative regularization effect arising from feature mismatch be-
tween the teacher and student during distillation, we introduce distillation weights for multi-
layer distillation by leveraging the similarity between teacher and student feature maps dur-
ing the associated training process. Since the proximity of pairwise similarity matrices may
be considered as a reliable indicator of the underlying semantic similarity [27] during the
distillation of feature maps. First, compute the similarity matrix:

Sm = FS
m · (Fm

S)Transpose; Tl = FT
l · (FT

l )Transpose (3)

where FS
m ∈ Rb×chw is reshaped from Fsm ∈ Rb×c×h×w, and FT

l is the same.Therefore Sm and
Tl are b× b matrices. Then we project the obtained similarity matrices through two lin-
ear layers. Each sample vector from the resulting similarity matrix is processed through a
linear layer followed by an activation function, then passed through a normalization layer.
The output vectors are standardized using the L2 norm, effectively refining the sample fea-
tures. Then we obtain the corresponding sample vector Sm[i] and Tl [i]. Finally, we calculate
attention weights through a similarity feature map associating students and teachers.

γ
i(tl ,sm) =

eSm[i]·Tl [i]
Transpose

L
∑

l=1

M
∑

m=l
eSm[i]·Tl [i]

Transpose
(4)

Where i denotes the i-th instance in the batch b,
b
∑

i=1

L
∑

l=1

M
∑

m=1
γ(sm, tl) = 1. By distributing

the attention weights, we obtain the final distillation loss.

L f kd =
b

∑
i

L

∑
l=1

M

∑
m=l

γ
i(tl ,sm)D(Ftl [i]− falign(Fsm [i])) (5)

3.4 Vanilla KD for the Output Horizontal and Vertical Coordinates
As shown in Fig. 2, SimDR transforms the feature representation of the backbone network’s
output stage into a classification task for horizontal and vertical coordinates of keypoints.
By training the network to classify coordinates instead of using heatmap-based methods
with multiple upsampling and post-processing steps, SimDR reduces computational costs
and speeds up inference. Therefore, we replace the heatmap-based feature representations
in both the teacher and student networks with SimDR and, based on this, employ the vanilla
knowledge distillation [11] for the outputs of the teacher and student. The loss function
based on coordinate classification is as follows

Ltask =−
N

∑
n=1

K

∑
k=1

Mn,k ·
L

∑
i=1

1
L
·Vilog(Si) (6)

where N denotes the number of people in one batch, K denotes the number of keypoints,
L denotes the localization bins for vertical and horizontal coordinates. Mn,k denotes the
weight mask used to mark the unseen keypoints, Vi denotes the label value. We generate the
supervised signal using a 1D Gaussian distribution, and employ the cross-entropy as the loss
function.
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We adopt the SimDR method by replacing the feature representations of the teacher and
student. At the output stage of the model, based on vanilla distillation, we use KL divergence
as the loss function to supervise the output of the student model.

Lvkd =− 1
N
·

N

∑
n=1

K

∑
k=1

KL(Ti,Si) (7)

where Ti denote the prediction of the teacher, Si denotes the prediction of the student.

3.5 Overall Loss
In summary, the overall loss during the training process of the student pose estimation net-
work is as follows

L = Ltask +α ·L f kd +β ·Lvkd (8)

where Ltask is the original loss for the pose estimation, α and β are the hyperparameters to
balance the total loss.

4 Experiments
4.1 Implementation Details
We evaluate our method on the MPII [24] and COCO dataset [18]. The MPII dataset is a
large-scale human pose dataset containing 24,920 images collected from YouTube videos
that contain human bodies, with 16 key points annotated for each human body. The COCO
dataset is a large-scale image dataset, it contains approximately 328,000 images and labels
approximately 250,000 human body instances with each human body containing 17 key
points. Data augmentation uses random image cropping and random transformation of the
bounding box, image flipping with angles ranging from -30° to 30°, and image scaling rang-
ing from 0.75 to 1.25. Our experiments are conducted on two 3080 GPUs using MMPose
[6] based on PyTorch [23]. The model optimization uses the Adam optimizer, with an initial
learning rate of 5e-4, with the weight decay factor 0.1, a total of 300 training epochs, and a
batch size of 32 during training. The hyperparameters of the loss function α = 0.005, β =
0.04. In the experiment, we use HRNet-W32 as the pretrained teacher model and selected
the lightweight backbone network LiteHRNet. Additionally, we utilized SimDR as the key-
point representation method in MPII dataset, achieving improvements in reducing Inference
Memory and speeding up inference time. In the subsequent distillation strategy, we default
to using SimDR as the head of the network.

4.2 Main Result
MPII Dataset: With the SimDR head, improvements have been achieved in scenarios where
models of varying complexities are based on reducing model parameters and accelerating in-
ference. Specifically, LiteHRNet18 achieved a 1.6% increase in PCKh@0.5 while reducing
inference memory by 20%. In Table 1, we present our model based on this and compare it
with state-of-the-art models and lightweight models through multi-stage distillation. Table
2 summarzies results on MPII with the teacher and student using different distillation meth-
ods. Our vanilla KD method is conducted on the SimDR feature representation method we
propose. In our approach, both vanilla and Feature-based distillation methods are employed.
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Distillation Mechanism Vanilla Single Layer Multiple Layers
Method KD [11] FitNet [25] RKD [22] AF [39] SP [27] ReviewKD [4] ours

PCKh@0.5 86.74 86.53 86.94 87.12 87.37 87.56 87.73
Table 1: Results on MPII validation set with the teacher HRNet-W32 and student LiteHR-
Net18 having different architectures.

Model Input size Params Infer memory Speed PCKh@0.5
ViTPose-B([32] 256 × 256 86M 14090MB —— 92.3
HRNET48([1] 256 × 256 64M —— 3.14s 91.4
HRNET32([28]) 256 × 256 28.5M 8194MB 2.35s 90.8
8-Stack Hourglass([20]) 256 × 256 25.1M 5174MB 1.20s 90.2
SimpleBaseline([31]) 256 × 256 34.0M 6354MB 1.53s 88.5
MobileNetV2([12]) 256 × 256 9.6M 3615MB 1.21s 85.4
ShuffleNetV2([41]) 256 × 256 7.6M 1383MB 0.69s 82.8
2-Stack Hourglass([20]) 256 × 256 18.6M —— —— 88.6
OKDHP([17]) 256 × 256 18.6M —— —— 89.2
LiteHRNet18([38]) 256 × 256 1.1M 2900MB 0.25s 86.1
LiteHRNet30([38]) 256 × 256 1.8M 3334MB 0.28s 86.9
LiteHRNet18⋆(Multi-KD) 256 × 256 1.1M 2473MB 0.22s 87.7
LiteHRNet30⋆(Multi-KD) 256 × 256 1.7M 2886MB 0.23s 88.9

Table 2: Experimental Results on the MPII validation set. ⋆ means using SimDR as the Head.

COCO Dataset: Table 3 shows the results of our proposed Multi-KD on the COCO test-
dev set. Our distillation method further enhances the model’s performance compared to the
original LiteHRNet, reducing approximately 20% of runtime memory while increasing AP
by 1.9% and 2.2%. The above results indicate that our method can still be effectively applied
to large-scale datasets.

Model Input size Params Infer memory Speed AP
ViTPose-B([32] 256 × 192 86M 15565MB —— 77.1
HRNET48([1]) 256 × 192 64M —— 2.94s 74.1
HRNET32([28]) 256 × 192 28.5M 8194MB 2.25s 73.4
SimpleBaseline([31]) 256 × 192 34.0M 6354MB 1.51s 70.4
MobileNetV2([12]) 256 × 192 9.6M 3615MB 1.19s 64.6
ShuffleNetV2([19]) 256 × 192 7.6M 1383MB 0.67s 59.9
2-Stack Hourglass([20]) 256 × 192 18.6M —— —— 71.7
Lite Pose([29]) 256 × 192 1.7M 1174MB 0.31s 40.6
OKDHP([17]) 256 × 192 18.6M —— —— 72.8
LiteHRNet18([38]) 256 × 192 1.1M 2170MB 0.25s 64.8
LiteHRNet30([38]) 256 × 192 1.8M 3334MB 0.28s 67.2
LiteHRNet18⋆(Multi-KD) 256 × 192 1.1M 1794MB 0.22s 66.7
LiteHRNet30⋆(Multi-KD) 256 × 192 1.7M 2816MB 0.24s 69.4

Table 3: Experimental Results on the COCO test-dev set. ⋆ means using SimDR as the Head.

4.3 Ablation Study

In the experiment, we use the hyper-parameters α and β in Equation 8 to balance the training
loss. In this section, we conduct the sensitivity study of the hyper-parameters by using
HRNet-W32 to distill LiteHRNet18 on MPII dataset, the results are shown in Fig. 5. Finally,
α = 0.005,β = 0.04 is selected. Table 4 shows the ablation experiments conducted on the
MPII dataset. In this section, the modules are added one-by-one to measure the efficiency.
We use the HRNet-W32 as the teacher. With our proposed method, the result is improved
over the baseline. When we further refine the structure with the weight allocation module,
the student gains better peoformance. When we finally aggregate the vanilla distillation
based on the simDR, the best results are gained.
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Figure 4: Qualitative comparsions on COCO Dataset. In the visualization of the coordinates,
we generate the supervised signal using a 1D Gaussian distribution, and after distillation, a
more prominent central Gaussian distribution is produced.

Figure 5: Sensitivity study of hyper-parameters α and β with HRNet-W32 and LiteHRNet18

Cross-stage MFT WA VKD LiteHRNet18(Multi-KD) LiteHRNet30(Multi-KD)
% % % % 85.9 86.7
" % % % 86.8 87.6
" " % % 87.3 88.4
" % " % 87.1 88.1
" " " % 87.5 88.7
" " " " 87.7 88.9

Table 4: Ablation result on MPII validation set. MFT: Multi-reception field feature transform
(Section 3.2. WA: Weight allocation(Section 3.2). VKD: vanilla knowledge Distillation
(Section 3.4)

5 Conclusion
In this work, we design a new knowledge distillation method for lightweight human pose
estimation model. During the cross-stage distillation process, we design a multiple recep-
tion field feature fusion module to enlarge the student’s receptive field for better learning
of teacher features. The weight allocation module effectively mitigated the negative regu-
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larization effects arising from semantic mismatch in multi-layer distillation processes. In
the model’s output stage, we replaced the method based on 2D Gaussian heatmap repre-
sentation with a method based on 1D coordinate decoupling. This not only reduced infer-
ence memory and accelerated inference speed but also improved model performance further
through vanilla distillation. Multiple proposed models were implemented on COCO and
MPII datasets, validating the effectiveness and advancement of the proposed method.
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