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Abstract

Recent adaptations aim to boost the few-shot capability of Contrastive Vision Lan-
guage Pre-training (CLIP) by transferring textual knowledge into an image recognition
procedure. However, these adaptation methods are usually operated on the global view of
an input image, and thus biased recognition of partial details of the image. To solve this
issue, we propose a Global-Local Content Matching (GLCM) strategy, which focuses
on both global and local views of the image. Specifically, we first extract global and
local features from the input image using the CLIP visual encoder. Meanwhile, we em-
bed the corresponding text knowledge into features by the CLIP textual encoder. Then,
we construct local representation with the textual features by selectively combining dis-
criminative local content. The local representation contains sufficient local details, and it
can help the classifier to focus on the details of the image. Finally, we match the global
and local content to construct a robust classifier, namely GLCM-Adapter. Our GLCM-
Adapter pays attention to information from different views, and thus achieves robust
recognition. We evaluate our method on the popular few-shot classification task with 11
benchmark datasets and achieve a significant improvement over state-of-the-art methods.
For example, our method achieves more than 1% average gains over the Tip-Adapter-F,
and obtains more than 76.5% average accuracy for the 16-shot setting.

1 Introduction
Recently, with the developments of the Vision-Language Models (VLMs), such as Con-
trastive Vision-Language Pre-training (CLIP) [28], several methods [39, 43] aim to adapt
CLIP for few-shot tasks and have achieved significant improvements, where the few-shot
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task is designed to solve the classification task with limited training samples and categories.
However, these methods only use global feature to fit the content of the image, thus ignoring
the expression of the local content of the image, and then the recognition performance of
such models is impaired when the training samples are insufficient.

To relieve these issues, recent works either extract the different parts of an image [20, 32]
(e.g. foreground or background) or design global-local interaction architectures [41, 44] to
help the model capture more content from the image. However, these methods introduce
huge training parameters and thus require large-scale computational and storage costs. In
this paper, we present a lightweight Global-Local Content Matching (GLCM) strategy to
achieve a similar effect as in previous work [19, 20, 32, 33, 35, 41, 44]. Through a few fine-
tuning steps, our method can focus on both local details and global structures and thus boost
the adaptation methods. Specifically, our CLCM-Adapter consists of the following steps:

Local Construction (Section 3.2): We first extract various local features by utilizing
CLIP’s visual encoder, where each local feature focuses on specific local content. Next, we
employ the CLIP classifier to filter the local features, where local content most relevant to
the corresponding category is selected, and irrelevant local content is filtered out. Finally,
we construct a new local representation by fusing the selected local features. We believe
that the constructed representation contains discriminative local details, and it can help the
model better analyze the detailed information of the image, and then help the model expand
its perception of the target when the training samples are insufficient.

Content Matching (Section 3.3): We design a global-local matching strategy to help the
classifier attend to both global and local information. Specifically, we devise a co-training
mechanism by designing global and local classifiers with textual features to match the global
features and local features of the image, respectively. In this process, the global features
and local features are jointly fine-tuned to obtain better matching, while helping the model
perceive the content of the sample in different fields of view. Moreover, we combine both
classifiers to analyze the image content from multiple perspectives, thereby realizing sample
recognition. Our contributions are summarized as threefold:

1. We pay attention to the local content of the image, and design a local construction
by selectively combining local content to construct robust local representation, which
helps the classifier focus on the details of the image.

2. We match both global and local content by jointly fine-tuning both global and local
classifiers, and then analyze the image content from different views.

3. We conduct extensive experiments with 11 few-shot classification datasets, and our
method achieves significant performance improvements over current methods.

2 Related Works
In this section, we first briefly introduce vision-language models and recent vision-language
model adaptation methods, and then we list related global-local content learning methods.
Finally, we enumerate the differences between our method and related methods.

2.1 Vision-Language Models
In recent years, with the development of data-driven networks [6, 8, 31], vision-language
models [12, 28] have achieved significant zero-shot image recognition performance and
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strong generalization abilities by contrastively pre-training over large-scale image-text data.
Subsequent works further improve the effectiveness of such methods by enhancing the vision-
language pre-training process. Specifically, FLIP [17] incorporates masking strategies [10]
over the visual encoder, the works in [16, 23, 37] introduces more self-supervision strate-
gies, and BLIP [15] focuses on data cleaning, it employs data filter mechanism for effective
pre-training.

2.2 Adaptation for Vision-Language Models
Current methods further demonstrate effectiveness by designing strategies to adapt Vision-
Language Models to various downstream tasks [7, 39, 43]. In this work, we focus on the
few-shot learning task, which recognize novel objects with very limited training samples.
As a seminal work for this task, CoOp [43] proposes a prompt learning-based strategy, it de-
signs learnable continuous tokens over the textual encoders to replace the handcrafted textual
templates. Follow-up work in [42] further improves the domain generalization performance
by proposing a lightweight network to generate image-conditional tokens. the works in
[22, 26] achieves significant performance gains by designing multiple hand-crafted prompts.
Moreover, the works in [13, 45] observe an over-fitting phenomenon in CoOp, and address
this by introducing regularization mechanisms.

Different from prompt learning methods, CLIP-Adapter [5] proposes a feature adapter
method, which designs lightweight architectures over the visual and textual backbones.
Zhang et al. [39] proposes a cache module to cache the few training samples, which can
be combined with the CLIP model for image recognition. Following works further enhance
the cache module by introducing inter-modal distance [30], prior refinement [46], and knowl-
edge from other foundation models [40].

2.3 Global-Local Content Learning
Our work draws inspiration from some global-local content learning methods. Therefore, we
list some related works in this subsection, such as [18, 38, 41, 44]. Specifically, BML [44]
proposes a meta-learning-based local branch to capture discriminative local information, and
the works in [38, 41] extracts local features by cropping the inputted images.

Different from those related works [38, 41, 44], which focus on improving the effective-
ness through either backbone pre-training or introducing a large amount of training param-
eters to large-scale fine-tuning, our method is efficient, we only require a few fine-tuning
steps. Moreover, compared to existing adaptation methods [30, 34, 39, 47], which aim to
boost performance over a single global branch, we focus on enhancing the adaptation model
with both global information and local details.

3 Approach
In this section, we first overview our GLCM-Adapter. Next, we revisit some preliminaries
and then illustrate our method in detail. Finally, we describe the training and inference
process. The overview of our GLCM-Adapter is illustrated in Figure 1, given a training
sample, we extract its global and local features, and we subsequently construct a robust
local representation by averaging the selected top-K local features, and finally, we design an
effective classifier by matching the global and local classifiers.
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Figure 1: An overview of our GLCM-Adapter, given a training sample, we first extract its
global and local features, and then we selectively construct a robust local representation,
finally, we match the local and global classifiers to facilitate a robust classifier.

3.1 Preliminaries
Few-Shot Learning. The data for few-shot learning is divided into 2 parts: support set
Dsupport, and testing set Dtest, and they have the same categories. The goal of few-shot
learning is to learn an image classification model that generalizes well to the N-way-K-shot
task. Training samples for the N-way-K-shot task are sampled from Dsupport and the testing
samples belong to Dtest, a N-way-K-shot task identifies N categories, and each category has
K support samples.

Constrastive Languange-Image Pre-training (CLIP). CLIP consists of an image en-
coder ΦΦΦv and a text encoder ΦΦΦt . After pre-training, CLIP can be effectively generalized to
downstream tasks with fixed encoders. Specifically, Given C hand-crafted prompts TTT (e.g.
the word embedding of “a photo of a {class}”, {class} is the category name), where C is the
number of categories, CLIP first represents them into features, denoted as fff t = ΦΦΦt(TTT ), and
fff t ∈ RC×d . Then the classification logits can be calculated as:

logitsCLIP = cos⟨ fff t , ftest⟩/τ, (1)

where ftest = ΦΦΦv(Xtest), and ftest ∈ Rd , it is the extracted feature of test sample, and τ is the
temperature coefficient learned in the pre-training phase, cos⟨•, •⟩ denotes the cosine similar-
ity, and logitsCLIP ∈ RC, it aims to classify the input sample into C different categories.

3.2 Local Construction
Our local construction selects local features and then fuses the selected local features to
construct a robust representation. For convenient illustration, we utilize 1 training sample to
describe our local construction process. Specifically, we remove the last pooling layer of the
CLIP visual encoder to extract the local features, and given a training sample with labels as
(Xtrain,Ltrain), we firstly extract its features by:

Lonehot = Onehot(Ltrain), (2)
f Global
v , fff Local

v = ΦΦΦv(Xtrain),Φ̄ΦΦv(Xtrain), (3)
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where Φ̄ΦΦv(•) is the CLIP visual encoder removing the last pooling layer, Onehot(•) transforms
the input label into one-hot vector, and thus Lonehot ∈ RC. Moreover, we denote the global
feature and the local features as f Global

v and fff Local
v , respectively, where f Global

v ∈ Rd , and
fff Local

v ∈ Rm×d , m is the number of local features.
For local construction, we utilize the pre-trained CLIP model to calculate the classifica-

tion score S for the local features, which can be formalized as:

S = Softmax(cos⟨ ft , fff Local
v ⟩/τ), (4)

where Softmax(·) denotes the Softmax function, and S ∈ RC×m. Then, we calculate the
KL divergence DKL between the classification score with the one-hot label to select local
features, which can be formalized as:

dis = DKL(Lonehot|S), (5)

where dis ∈ Rm. Thus we select local features with the top-K dis values, the selected local
features are denoted as GGGLocal

v , and GGGLocal
v ∈RK×d . To construct a robust local representation,

we fuse the selected local features by averaging them, formalized as:

gLocal
v = Averaging(GGGLocal

v ), (6)

where the constructed local representation is gLocal
v . Compared with the global feature

f Global
v , which presents the global content, the local representation gLocal

v contains more de-
tailed local information, and then further facilitate the construction of a robust local classifier.

3.3 Global-Local Matching
In this subsection, we elaborate on our global-local matching strategy. Specifically, we first
illustrate the design of global and local classifiers, and then we describe the co-training
strategy. For convenient description, we utilize the extracted test feature of the test sample
Xtest as ftest, and we only utilize the global features of the test samples with the purpose of
reducing the computational and storage costs.

Specifically, given the global feature and the constructed local representation of the train-
ing sample Xtrain, we design classifiers for both local and global parts, respectively. We em-
ploy a cached module described in [39], the classification logits of the local cached module
are calculated as:

logitsLocal
Cache = exp(−β

Local(1− ftest ·gLocal
v )) • Lonehot, (7)

where β Local is the hyper-parameter for the local cached module. Then the local classifier
can be written by fusing logits from the cached module with the pre-trained CLIP model,
which can be written as:

ΓΓΓ
Local = α

LocallogitsLocal
Cache + logitsCLIP, (8)

where αLocal is the hyper-parameter to control the fusion process, and ΓΓΓ
Local is the local

classifier. Similarly, We calculate the global cached module and the classifier as:

logitsGlobal
Cache = exp(−β

Global(1− ftest ·gGlobal
v )) • Lonehot, (9)

ΓΓΓ
Global = α

GloballogitsGlobal
Cache + logitsCLIP, (10)

Citation
Citation
{Zhang, Zhang, Fang, Gao, Li, Dai, Qiao, and Li} 2022



6 STUDENT, PROF, COLLABORATOR: GLCM-ADAPTER

where the β Global and αGlobal are the hyperparameters of the global classifier, which has
similar effects as described in the local classifier, and ΓΓΓ

Global denotes the global classifier. To
further match the local and global classifiers, we define our final classifier as the fusion of
both classifiers, which can be formalized as:

ΓΓΓ = γΓΓΓ
Local +ΓΓΓ

Global, (11)

where γ is the hyper-parameter to control the fusion ratio. Our co-training simultaneously
fine-tunes the global and local classifiers with the fusion ratio γ , and thus the final classifier
can focus on content from different scales.

3.4 Training and Inference

For the training stage, given N-way-K-shot support samples from Dsupport, we firstly extract
their local representations and global feaures, and then we construct the global and local
classifiers. In our method, to keep the correspondence of the training and inference stages,
we utilize the global features for classifier training, where we denote the global features of the
support samples as fff Global

v , and the labels as ytrain, where fff Global
v ∈ RNK×d and ytrain ∈ RNK .

Specifically, despite setting the local representations and global features tuneable, we
also apply a linear classifier over the CLIP textural features, which can be formalized as:

f̄ff t =W ∗ fff t +b. (12)

wher W and b are learnable parameters. Meanwhile, we use the cross-entropy(CE) loss with
the support feature-label pairs to train the final classifier. The training loss can be formalized
by the following equation:

L=
1

NK

NK

∑
i=1

CE((ΓΓΓ( fff Global
v ),ytrain), (13)

With a few of optimization steps, the classifier can be generalized well for the few-shot tasks.
For the inference stage, the classification is achieved by replacing the original parameters
with the corresponding well-optimized ones. Compared to the original classifier, our GLCM-
Adapter not only concentrates on the local details, but also attends to the global structural
information, achieving a robust recognition of the object.

4 Experiments

In this section, we conduct experiments to validate the effectiveness of our GLCMAdapter.
Specifically, we first introduce the experimental settings, then we analyze the ablation stud-
ies, then we describe the comparison results with the state-of-the-art methods. Our experi-
ments aim to address the following research questions (RQs):
RQ1: What are the effects of local construction?
RQ2: What are the influences of global local matching?
RQ3: How does our proposed GLCM-Adapter perform compared with the SOTA methods?
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Methods ImageNet Average of 11 datasets
1 2 4 8 16 1 2 4 8 16

K = 1 62.31 62.86 63.44 64.70 66.02 66.61 69.06 72.07 74.66 77.91
K = 5 62.39 62.93 63.45 64.70 66.08 66.73 69.33 72.39 74.94 78.06
K = 10 62.41 62.98 63.49 64.76 66.09 66.73 69.71 72.46 75.00 78.11
K = 20 62.42 63.05 63.50 64.81 66.13 66.77 69.62 72.52 75.06 78.15
K = 30 62.43 63.07 63.52 64.82 66.14 66.80 69.69 72.57 75.07 78.17
K = 40 62.42 63.10 63.54 64.87 66.15 66.81 69.81 72.59 75.08 78.19
K = 49 62.42 63.12 63.57 64.88 66.16 66.83 69.90 72.61 75.11 78.21

Table 1: The accuracy (%) of the local classifier with different K for local construction.

4.1 Experimental Settings

Datasets. To validate the effectiveness of our method, we conduct experiments over the
few-shot classification task with 11 widely used datasets. Specifically, the 11 few-shot
datasets including ImageNet [3], Caltech101 [4], DTD [2], EuroSAT [11], FGVCAircraft
[21], Food101 [1], OxfordFlowers [24], OxfordPets [25], StanfordCars [14], SUN397 [36],
UCF101 [29].
Implementation Details. Our experiments follow the work in [39], specifically, we design
our method with ResNet50 [9] and the modified transformer [27] as visual and textual en-
coder, respectively. Moreover, all parameters are optimized with 20 epochs, and we employ
the pre-trained CLIP model with the hand-crafted textual prompts in [26] for local construc-
tion and few-shot comparison.

4.2 Ablation Studies

In this subsection, we use the validation sets of 11 few-shot datasets to evaluate the effec-
tiveness of different components of our method. For convenience, we show the experimental
results of the ImageNet dataset and an average of 11 datasets. Specifically, we conduct ex-
periments with 1/2/4/8/16-shot training samples for evaluation, where the training sets are
constructed by following [39].

4.2.1 The effects of local construction (RQ1).

In this ablation study, we conduct experiments to validate the effects of our local construction
from 2 aspects: (1) sensitivity to different numbers of K and (2) comparison with different
selection criteria. Meanwhile, all experiments are conducted with our local classifier.

Specifically, the experimental results for different numbers of K are illustrated in Table 1.
For a clear illustration, we present the line chart with the performance results of different
training samples, where the total number of K is 49, the top line shows the ImageNet results,
and the bottom line describes the average results. We can observe that with K increases,
the performance of the local classifier increases and gradually stabilizes as K= 10, where the
variances between K=10 and the optimal results are less than 0.1%, which is marginal. Thus,
to mitigate further computational and storage costs, we select K=10 for local construction.

Meanwhile, the experimental results with different selection criteria are shown in Ta-
ble 2, where “Random-Select” denotes that we select local features randomly, “Max-Margin”
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Methods ImageNet Average of 11 datasets
1 2 4 8 16 1 2 4 8 16

Random-Select 62.37 62.96 63.43 64.65 66.04 66.51 69.61 72.43 74.79 77.98
Max-Margin 62.37 62.94 63.45 64.73 65.99 66.61 69.33 72.29 74.89 77.95
Min-Margin 62.32 62.94 63.41 64.58 66.05 66.57 69.34 72.30 74.91 77.98
Ours 62.41 62.98 63.49 64.76 66.09 66.73 69.71 72.46 75.00 78.11

Table 2: The accuracy (%) of the local classifier with different selection criteria.

Methods ImageNet Average of 11 datasets
1 2 4 8 16 1 2 4 8 16

Local Branch 62.41 62.98 63.49 64.76 66.09 66.73 69.71 72.46 75.00 78.11
Global Branch 62.40 63.12 63.52 64.85 66.12 66.73 69.98 72.56 75.12 78.16
Global-Local 62.44 63.15 63.56 64.89 66.18 66.85 70.16 72.70 75.26 78.24

Table 3: The accuracy (%) of different parts of our method.

and “Min-Margin” represent that we select local features with maximum and minimum pre-
diction margins, respectively, and “Ours” is the local branch with our selection criterion.
Specifically, we can observe that our selection criterion achieves the best performance for all
experimental settings, which demonstrates its effectiveness.

4.2.2 The influences of global-local matching (RQ2).

In this ablation study, we conduct experiments to evaluate the performance of our global local
matching strategy. The experimental results are shown in Table 3, where “Local Branch” and
“Global Branch” denote our local classifier and global classifier, respectively, and “Global-
Local” is our final classifier. Specifically, we can find that (1) our global-local matching
achieves the best performances for all settings, and the most average gains over the local
branch is around 0.7%. (2) the performance of “Global Branch” is slightly better than “Local
Branch”, we believe the reason is that the “Local Branch” selectively utilizes local features,
while missing some relative information.

4.3 Comparison with other methods (RQ3)
In this subsection, we compare our method with state-of-the-art methods for few-shot classi-
fication. Specifically, we follow existing methods [30, 39] to conduct few-shot classification
with 1/2/4/8/16-shot training samples for comparison. The experimental results are shown
in Figure 2, where the compared methods include Zero-Shot CLIP [28], Linear Probing
CLIP [28], CoOp [43], training-free and training-need TIP-Adapter [39] (denoted as TIP-
Adapter and TIP-Adapter-F, respectively), and TIP-X [30]. Following are detailed illustra-
tions, where “GLCM-Adapter” represents our proposed GLCM-Adapter. From the average
results, we can find that our GLCM-Adapter yields remarkable performance improvement
over all compared methods. Specifically, it brings more than 1% performance improvement
over the Tip-Adapter-F method for all shot settings, and the best performance gain is more
than 2.5% for 2-shot, which is significant. Meanwhile, we can observe that on the large-
scale ImageNet dataset, our method obtains significant results, it achieves more than 1%
accuracy gain over current methods with about 64.90% and 66.15% accuracy for 8-shot, and

Citation
Citation
{Udandarao, Gupta, and Albanie} 2023

Citation
Citation
{Zhang, Zhang, Fang, Gao, Li, Dai, Qiao, and Li} 2022

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Zhou, Yang, Loy, and Liu} 2022{}

Citation
Citation
{Zhang, Zhang, Fang, Gao, Li, Dai, Qiao, and Li} 2022

Citation
Citation
{Udandarao, Gupta, and Albanie} 2023



STUDENT, PROF, COLLABORATOR: GLCM-ADAPTER 9

Figure 2: Few-shot performance with different methods on 11 datasets, we first show the
average results, and the following are organized in the order of dataset names.

16-shot settings, respectively. Moreover, our GLCM-Adapter achieves a new state-of-the-art
on DTD dataset for all shot settings, with 65.25% and 70.15% performance for 4-shot and
16-shot, respectively.

5 Conclusion
In this paper, we discuss the utilization of local content of CLIP adaptation methods and
propose a Glocal-Local Content Matching (GLCM-Adapter) method to address this issue.
Specifically, (1) The local construction is proposed to select discriminative local details and
then construct a robust local representation. (2) The global-local matching is designed to
enhance the robustness of the classifier for capturing multi-scale content. (3) Extensive ex-
periments on 11 few-shot datasets demonstrate the effectiveness of our proposed methods.
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We notice that our method utilizes local information from the CLIP model. But we
believe that introducing local content detectors can further improve the model’s capacity
and generalization ability. And we focus on exploring some local content detectors, and
then combine them with the CLIP model to further enhance the global-local content learning
process in our future work.
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