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Abstract
Self-supervised learning (SSL) is gaining attention for its ability to learn effective

representations with large amounts of unlabeled data. Lightweight models can be dis-
tilled from larger self-supervised pre-trained models using contrastive and consistency
constraints, but the different sizes of the projection heads make it challenging for students
to accurately mimic the teacher’s embedding. We propose RETRO, which reuses the
teacher’s projection head for students, and our experimental results demonstrate signifi-
cant improvements over the state-of-the-art on all lightweight models. For instance, when
training EfficientNet-B0 using ResNet-50/101/152 as teachers, our approach improves the
linear result on ImageNet to 66.9%, 69.3%, and 69.8%, respectively, with significantly
fewer parameters.

1 Introduction
Deep learning has achieved remarkable success in various visual tasks, such as image classifi-
cation, object detection, and semantic segmentation, thanks to the availability of large-scale
annotated datasets. However, acquiring labeled data is time-consuming and expensive, making
it crucial to explore better ways to utilize unlabeled data. Self-supervised learning (SSL) has
emerged as an effective method to learn useful representations on unlabeled data, resulting in
an outstanding performance on downstream tasks [3, 4, 7, 11, 12, 14, 18, 21].

Despite its effectiveness, most SSL methods require large networks, and the performance
deteriorates when the model size is reduced. To address this issue, [9] proposed SEED, a self-
supervised representation distillation method that distills the knowledge of larger pre-trained
models into lightweight models via self-supervised learning. Similarly, CompRess [16]
mimics the similarity score distribution between a teacher and a student over a dynamically
maintained queue. [10] suggests incorporating consistency constraints between teacher and
student embeddings to alleviate the Distilling Bottleneck problem via DisCo. BINGO [27]
aims to transfer the relationship learned by the teacher to the student by leveraging a set of
similar samples constructed by the teacher and grouped within a bag.
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Figure 1: ImageNet top-1 linear evaluation ac-
curacy on different network architectures. Our
method significantly exceeds the result of using
MoCo-V2 directly and surpasses the state-of-
the-art DisCo by a large margin. Particularly,
the result of EfficientNet-B0 is quite close to
the teacher ResNet-50, while the number of
parameters of EfficientNet-B0 is only 16.3%
of ResNet-50. The improvement brought by
RETRO is compared to the MoCo-V2 baseline.

Despite achieving state-of-the-art results
across multiple tasks with high performance,
some concerns remain. First, [10] discov-
ered that expanding the dimension of the hid-
den layer in the MLP (projection head) could
alleviate the Distilling Bottleneck problem.
However, this approach is trivial since de-
termining the size of the dimension and
how large it should be remains unanswered.
Second, because the student is lightweight
with limited capability, it is challenging to
accurately mimic the teacher from the en-
coder to the projection head. For exam-
ple, in the DisCo study [10], they expanded
the dimension to 2048, which is the projec-
tion head dimension of ResNet-50/101/152.
Consequently, this approach is equivalent
to increasing the capability of mimicking
the teacher, resulting in improved perfor-
mance. However, when using ResNet-50×2
with a dimension of 8192 as a teacher, the
performance on MobileNet-v3-Large and
EfficientNet-B1 drops significantly and is
inferior to the previous method [9]. More-
over, the feature distributions of the teacher
and student models are statistically different
and cannot be directly compared in practice, even if their dimensions are the same. There-
fore, the optimal dimension for the projection head and how to efficiently distill the teacher
embedding remain unanswered questions.

In this study, we propose a novel approach for improving the performance of distilling
lightweight models through SSL. Specifically, we suggest reusing the pre-trained teacher
projection head for students, instead of mimicking it during training. This is based on the
hypothesis that the most valuable knowledge is contained in the projection head, and it
should be retained during distillation. Our proposed “teacher projection head reusing strategy”
involves replacing the student projection head with the pre-trained one from a teacher, which
is a large dimension MLP layer that has been optimized. This enables direct reuse of the
projection head, without the need for heuristic selection of the dimension size via trial and
error. Additionally, a “dimension adapter” is inserted between the student encoder and the
teacher projection head to align the dimension.

Our approach simplifies the training objective from mimicking the representation and
the embedding to aligning the representation with the optimal embedding. Our experiments
show that the proposed method, named RETRO, outperforms the existing DisCo method
by a significant margin when using the same architecture on various downstream tasks.
Moreover, RETRO achieves state-of-the-art SSL results on all lightweight models, including
ResNet-18/34, EfficientNet-B0/B1, and MobileNetV3. Notably, the linear evaluation results
of EfficientNet-B0 on ImageNet are comparable to ResNet-50/ResNet-101, despite having
only a fraction of the parameters. On the COCO and PASCAL VOC datasets, RETRO also
achieves more than 3% mAP improvement across different pre-trained models.
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2 Related Work
Self-supervised learning and knowledge distillation have emerged as crucial research areas in
machine learning, attracting significant attention in recent years. In this section, we present a
review of some of the key works in these fields.

2.1 Self-supervised Learning
Self-supervised learning is an essential branch of unsupervised learning that automatically
generates supervisory signals from unlabeled data. One of the earliest and most effective tech-
niques used in self-supervised learning is the autoencoder, which compresses the input data
and reconstructs it. Contrastive learning is another popular self-supervised learning method
that enables the model to differentiate between similar and dissimilar pairs of examples.

Recent studies have demonstrated the efficacy of contrastive-based techniques in self-
supervised representation learning, where different perspectives of the same input are encour-
aged to be closer in feature space [3, 4, 5, 6, 12, 14]. For instance, SimCLR [3, 4] has proved
that using strong data augmentation, larger batch sizes of negative samples, and including
a projection head (MLP) after global average pooling can boost self-supervised learning.
However, the performance of SimCLR is dependent on very large batch sizes and may not be
feasible in real-world scenarios.

MoCo [6, 14], on the other hand, uses a memory bank to maintain consistent representa-
tions of negative samples. It considers contrastive learning as a look-up dictionary, enabling it
to achieve superior performance without large batch sizes, making it more practical. BYOL
[12] introduces a predictor to one branch of the network to prevent trivial solutions and
break the symmetry. DINO [2] applies contrastive learning to vision transformers with
self-distillation intuition.
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Figure 2: Comparison with existing self-supervised distillers. x is the input image. The orange
arrow indicates the knowledge transfer direction. Both 2(a) CompRess [16] and 2(b) SEED
[9] transfer the knowledge of the similarity between a sample and a negative memory bank.
2(c) DisCo [10] constrains the last embedding of the student to be consistent with that of
the teacher. 2(d) Our RETRO improves DisCo by reusing the teacher projection head for the
student, which has a higher capability to generate generalized embedding. ’Adt.’ indicates
the adapter layer.

2.2 Knowledge Distillation
Knowledge distillation is a powerful technique used for transferring knowledge from a large,
complex model (known as the teacher) to a smaller, simpler model (known as the student) to
improve its performance.
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The idea of knowledge distillation was first proposed by [15], which transfers knowledge
from a large teacher to a smaller student by minimizing the Kulback-Leibler (KL) divergence
between the outputs of the two models. Attention Transfer (AT) is introduced to transfer the
spatial attention of the teacher to the student by minimizing the mean squared error (MSE)
between the feature maps of the two models. This method guides the student to focus on
relevant regions of the input image, improving its performance on small datasets.=

FitNets [23] is another method of knowledge distillation that transfers knowledge from the
intermediate layers of a deep and thin teacher to a deeper but thinner student. The intermediate
layers learned by the teacher are treated as hints, and the student is trained to mimic them
using mean squared error loss. Relation Knowledge Distillation (RKD) [20] is a method
that transfers the mutual relationship between the samples in a batch from the teacher to the
student. RKD uses distance-wise and angle-wise distillation loss to transfer the relationship
between the samples to the student.

3 Method

3.1 Self-supervised Learning and Knowledge Distillation
In recent years, there has been a growing interest in combining knowledge distillation and self-
supervised learning to improve the learning process. Some recent works, such as CRD [25] and
SSKD [26], have used self-supervision as an auxiliary task to enhance knowledge distillation
in fully supervised settings by transferring relationships between different modalities or
mimicking transformed data and self-supervision tasks.

On the other hand, CompRess [16] and SEED [9] have focused on improving self-
supervised visual representation learning on small models by incorporating knowledge dis-
tillation. They leverage the memory bank of MoCo [14] to maintain the consistency of the
student’s distribution with that of the teacher. Meanwhile, DisCo [10] proposes to align the
final embedding of the lightweight student with that of the teacher, exploiting the student’s
learning ability to maximize knowledge. They also increase the dimension of the student’s
projection head to better mimic the teacher’s embedding.

However, the questions of which knowledge is essential for the student and how to
efficiently distill it remain unanswered. Moreover, previous approaches focused only on
making the student mimic the teacher instead of exploiting the student’s learning ability.
Our proposed method aims to enhance the self-supervised representation learning ability of
lightweight models by aligning the student encoder with the teacher’s projection head instead
of merely mimicking the teacher. Figure 2 illustrates the differences between our proposed
method and CompRess, SEED, and DisCo.

In this section, we will provide a detailed description of our proposed method, RETRO.
We will start by reviewing the preliminary concepts of contrastive-learning-based SSL. Next,
we will discuss the overall framework of RETRO and explain how it works. Finally, we will
introduce the objective of RETRO and describe the process of updating its parameters.

3.2 Preliminary on Contrastive Learning Based SSL
3.2.1 Contrastive Learning Based SSL

In contrastive-learning-based SSL, the goal is to predict whether a pair of instances belong
to the same class or different classes. The two instances are obtained by applying different
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data augmentation techniques to the same input image x, resulting in two augmented views v
and v′ of the same instance. The objective is to make the two views similar while views of
different instances should be dissimilar. Each view is then passed through two encoders fs (·)
and ft (·) to obtain the corresponding representations zs and zt .

To map the high-dimensional representations to a lower-dimensional embedding, a pro-
jection head g(·), which is a non-linear MLP, is used. Specifically, g takes the representation
z as input and maps it to an embedding E as E = g(z) = g◦ f (x). These embeddings are then
used to estimate the similarity in contrastive learning. The projection head is crucial to the
success of self-supervised learning, as demonstrated in prior works such as MoCo [14] and
SimCLR [3]. The encoder can be any network architecture, such as ResNet or EfficientNet.

The projection head consists of two linear layers followed by a non-linear activation
function such as ReLU. The output dimension of the projection head is typically set to a
smaller value, such as 128, to obtain a low-dimensional embedding.

3.2.2 DisCo
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Figure 3: The pipeline of the proposed RETRO tech-
nique. Two different data augmentation techniques
first transform a single image into two views. A
self-supervised pre-trained teacher is added in ad-
dition to the original contrastive SSL component,
and the final embeddings generated by the learnable
student and the frozen teacher must be consistent
for each view.

In DisCo, the input x is transformed into
two views v and v′ using two different
augmentation strategies in each itera-
tion. The views are fed into both the
student encoder fs and the teacher en-
coder ft to create four representations
zs, z′s, zt , and z′t . These representations
are then projected using two different
projection heads gs and gt to produce
low-dimensional embeddings Es, E ′s, Et ,
and E ′t , respectively. The same process
is also applied with the mean student,
resulting in representations zm, z′m and
embeddings Em, E ′m. The embeddings
are then used to compute the contrastive
learning loss using InfoNCE loss [19],
similar to MoCo [14], as follows:

Lcon =− log
exp

(
q ·k+/τ

)
∑

K
i=0 exp(q ·ki/τ)

, (1)

where q is the embedding Es of the stu-
dent on view v, k is the embedding E ′m
of the mean student on view v′, τ is the
temperature, and K is the size of the
memory bank. Additionally, the embed-
dings are used to compute a consistency
loss using cosine similarity, which is
represented using mean squared error
(MSE) as follows:

Ldis = ∥Es−Et∥2
2 +∥E ′s−E ′t∥2

2 (2)
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3.3 RETRO

The overall framework of RETRO is illustrated in Figure 3. RETRO comprises a lightweight
student s(·), a mean student m(·), and a pre-trained frozen teacher t (·), which is similar to
the DisCo framework [10]. However, unlike DisCo, we propose that the pre-trained teacher
projection head can be used directly for the students since it contains the most valuable
knowledge. Therefore, the objective is to train the student encoder to align the representation
with the teacher projection head, instead of learning to mimic the teacher’s behavior. In
addition, we leverage the power of the multi-view strategy by inputting both views into the
mean student and enforcing the similarity constraint on pairs of embeddings between the
student and the mean student.

To achieve this, we replace the student projection head with the teacher’s projection head
g, ensuring the consistency of all projection heads. However, since the input dimension of the
student projection head is smaller than that of the teacher, we place an adapter a(·) between
the encoder and projection head to align the dimension. This process can be formulated as
Es = g◦a(zs), E ′s = g◦a(z′s), Et = g(zt), E ′t = g(z′t), Em = g′ ◦a′ (zm), and E ′m = g′ ◦a′ (z′m),
where a′ (·) and g′ (·) are the mean adapter and mean projection head, respectively. These
embeddings are then used to compute the contrastive loss and consistency loss.

3.4 Loss function and parameter update process
We follow BYOL [12] to symmetrize the contrastive loss in RETRO as follows:

Lcon =
1
2

− log
exp

(
q ·k′+/τ

)
∑

K
i=0 exp

(
q ·k′ i/τ

)
+

1
2

− log
exp

(
q′ ·k+/τ

)
∑

K
i=0 exp

(
q′ ·ki/τ

)
 (3)

Here, q and q′ are the embeddings from the student, while k and k′ are the embeddings from
the mean student. We use two different memory banks for the two different views v and v′,
respectively. The overall loss function of RETRO is formulated as follows:

L= Ldis + γLcon (4)

where Ldis is the consistency loss, and Lcon is the contrastive loss of the conventional SSL
method. γ is a hyperparameter used to control the weight of the contrastive loss, which is
typically set to 1. The parameters of the student encoder are optimized using the objective
from Equation 4, while the parameters of the entire mean student are updated using the
exponential moving average strategy as follows:

θk← mθk +(1−m)θq (5)

Here, m ∈ [0,1) is the momentum coefficient, which is typically set to 0.999, and θ represents
the model parameters.

4 Experiments

4.1 Implementation Details
We first pre-train the self-supervised teacher models on the ImageNet dataset [24], which
contains 1.3 million training images and 50,000 validation images with 1,000 categories,
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using the MoCo-V2 [14] framework. We use ResNet as the backbone for the teacher models
with different widths/depths, such as ResNet-50 (22.4M), ResNet-101 (40.5M), ResNet-
152 (55.4M), and ResNet-50×2 (94M). We pre-train ResNet-50/101 using the MoCo-V2
framework for 200 epochs, ResNet-152 for 800 epochs, while ResNet-50×2 is pre-trained
using the SwAV [1] method for 400 epochs.

We evaluate our RETRO method on five lightweight networks as students, including
EfficientNet-B0 (4.0M), EfficientNet-B1 (6.4M), MobileNet-v3-Large (4.2M), ResNet-18
(10.7M), and ResNet-34 (20.4M). We use the same learning rate and optimizer as MoCo-V2
and train all student models for 200 epochs. During distillation, the teacher’s and student’s
projection heads are frozen for RETRO, while SEED, DisCo, and BINGO only freeze the
teacher. As a result, RETRO has fewer trainable parameters and simpler training objectives.
Note that SEED trains the models using a SwAV pre-trained teacher for 400 epochs, and
BINGO uses CutMix regularization [28] and more positive samples (5×) during training,
resulting in a higher benchmark score. Additionally, BINGO is not an end-to-end framework.

We later fine-tune the self-supervised distillation models for linear evaluation on ImageNet
for 100 epochs. We set the initial learning rate to 3 for EfficientNet-B0/B1 and MobileNet-v3-
Large, and 30 for ResNet-18/34. The learning rate is scheduled to decrease by a factor of 10
at 60 and 80 epochs, and we use SGD as the optimizer. We follow the other hyperparameters
strictly as in MoCo-V2 [14].

4.2 Linear Evaluation
The results presented in Table 1 demonstrate that students distilled by RETRO outperform
their counterparts pre-trained by MoCo-V2 (Baseline), and also outperform the prior state-
of-the-art DisCo by a significant margin. However, we have not included CompRess in our
comparison since it uses a teacher that was trained for 600 epochs longer and distills for 400
epochs longer than SEED, DisCo, and RETRO. Therefore, it would be unfair to compare
RETRO to CompRess in this context.

Method T
S Eff-b0 Eff-b1 Mob-v3 R-18 R-34

T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5

Supervised 77.1 93.3 79.2 94.4 75.2 - 72.1 - 75.0 -

Self-supervised
MoCo-V2 (Baseline)♢ 46.8 72.2 48.4 73.8 36.2 62.1 52.2 77.6 56.8 81.1

SSL Distillation
SEED [9] R-50 (67.4)♢ 61.3 82.7 61.4 83.1 55.2 80.3 57.6 81.8 58.5 82.6

DisCo [10] R-50 (67.4)♢ 66.5 87.6 66.6 87.5 64.4 86.2 60.6 83.7 62.5 85.4
BINGO [27] R-50 (67.4)♢ - - - - - - 61.4 84.3 63.5 85.7

RETRO R-50 (67.4)♢ 66.9 88.2 67.1 88.4 66.2 87.2 62.9 85.4 64.1 86.8
(20.1 ↑) (16.0 ↑) (18.7 ↑) (14.6 ↑) (30.0 ↑) (25.1 ↑) (10.7 ↑) (7.8 ↑) (7.3 ↑) (5.7 ↑)

SEED [9] R-101 (70.3) 63.0 83.8 63.4 84.6 59.9 83.5 58.9 82.5 61.6 84.9
DisCo [10] R-101 (69.1)♢ 68.9 88.9 69.0 89.1 65.7 86.7 62.3 85.1 64.4 86.5

RETRO R-101 (70.3) 69.3 89.8 69.9 89.9 67.5 88.6 64.8 86.6 66.1 87.9
(22.5 ↑) (17.6 ↑) (21.5 ↑) (16.1 ↑) (31.3 ↑) (26.5 ↑) (12.6 ↑) (9.0 ↑) (9.3 ↑) (6.8 ↑)

SEED [9] R-152 (74.2) 65.3 86.0 67.3 86.9 61.4 84.6 59.5 83.3 62.7 85.8
DisCo [10] R-152 (74.1)♢ 67.8 87.0 73.1 91.2 63.7 84.9 65.5 86.7 68.1 88.6

BINGO [27] R-152 (74.1)♢ - - - - - - 65.9 87.1 69.1 88.9
RETRO R-152 (74.1)♢ 69.8 90.2 73.7 91.4 68.0 86.2 66.9 88.1 69.4 89.9

(23.0 ↑) (18.0 ↑) (25.3 ↑) (17.6 ↑) (31.8 ↑) (24.1 ↑) (14.7 ↑) (10.5 ↑) (12.6 ↑) (8.8 ↑)

SEED [9] R-50×2 (77.3)† 67.6 87.4 68.0 87.6 68.2 88.2 63.0 84.9 65.7 86.8
DisCo [10] R-50×2 (77.3)† 69.1 88.9 64.0 84.6 58.9 81.4 65.2 86.8 67.6 88.6

BINGO [27] R-50×2 (77.3)† - - - - - - 65.5 87.0 68.9 89.0
RETRO R-50×2 (77.3)† 70.2 90.4 73.8 91.6 70.1 89.2 65.9 87.1 68.9 89.7

(23.4 ↑) (18.2 ↑) (25.4 ↑) (17.8 ↑) (33.9 ↑) (27.1 ↑) (13.7 ↑) (9.5 ↑) (12.1 ↑) (8.6 ↑)

Table 1: ImageNet Test Accuracy (%) using Linear Classification on Different Student
Architectures. In the table, ♢ indicates that the teacher and students are pre-trained with
MoCo-V2, while † indicates that the teacher is pre-trained by SwAV. SEED distilled for
800 epochs using R-50×2 as the teacher, while DisCo, BINGO, and RETRO distilled for
200 epochs. "T" denotes the teacher, and "S" denotes the student. The subscript in green
represents the improvement compared to the MoCo-V2 baseline.
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The results in Table 1 demonstrate that RETRO outperforms prior methods SEED, DisCo,
and BINGO across all benchmarked models. Notably, when using ResNet-50 as the teacher,
RETRO achieves state-of-the-art top-1 accuracy on all student models. Moreover, using
ResNet-152 instead of ResNet-50 as the teacher leads to a significant improvement in the
performance of ResNet-34, from 56.8% to 69.4%. It is worth noting that when using RETRO
with ResNet-50/101 as the teacher, the linear evaluation result of EfficientNet-B0 is very close
to that of the teacher, despite EfficientNet-B0 having only 9.4%/16.3% of the parameters of
ResNet-50/101.

4.3 Semi-supervised Linear Evaluation

Method T 1% labels 10% labels

MoCo-V2 (Baseline) - 30.9 45.8

SEED[9] R-50 (67.4) 39.1 50.2
DisCo[10] R-50 (67.4) 39.2 50.1
BINGO[27] R-50 (67.4) 42.8 57.5
RETRO R-50 (67.4) 43.1 57.9

SEED[9] R-101 (70.3) 41.4 54.8
DisCo[10] R-101 (69.1) 47.8 54.7
RETRO R-101 (70.3) 49.2 60.5

SEED[9] R-152 (74.1) 44.3 54.8
DisCo[10] R-152 (74.1) 47.1 54.7
BINGO[27] R-152 (74.1) 50.3 61.2
RETRO R-152 (74.1) 50.9 62.0

BINGO[27] R-50×2 (77.3) 48.2 60.2
RETRO R-50×2 (77.3) 50.6 61.9

Table 2: Semi-supervised learning by fine-
tuning 1% and 10% images on ImageNet using
ResNet-18.

We also evaluate our method in semi-
supervised scenarios, following previous
methodologies. We use 1% and 10% sam-
pled subsets of the ImageNet training data
(i.e., 13 and 128 samples per class, respec-
tively) to fine-tune the student models. As
shown in Table 2, our RETRO approach
consistently outperforms the baseline under
any quantity of labeled data. Notably, our
method achieves these results while strictly
following the settings from SEED [9] and
DisCo [10], whereas BINGO uses a higher
learning rate (10) for the classifier layer.

Moreover, our experiments demonstrate
that RETRO is stable under varying percent-
ages of annotations, indicating that students always benefit from being distilled by larger
teacher models. The results also suggest that having more labeled data can help improve the
final performance of the student models.

S T Method

Object Detection Instance Segmentation

VOC COCO COCO

APbb APbb
50 APbb

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

R-34

× MoCo-V2 53.6 79.1 58.7 38.1 56.8 40.7 33.0 53.2 35.3

R-50

SEED [9] 53.7 79.4 59.2 38.4 57.0 41.0 33.3 53.2 35.3
DisCo [10] 56.5 80.6 62.5 40.0 59.1 43.4 34.9 56.3 37.1

RETRO 57.2 81.4 63.3 41.5 60.2 45.3 35.9 57.8 38.8
(3.6 ↑) (2.3 ↑) (4.6 ↑) (3.4 ↑) (3.4 ↑) (4.6 ↑) (2.9 ↑) (4.6 ↑) (3.5 ↑)

R-101

SEED [9] 54.1 79.8 59.1 38.5 57.3 41.4 33.6 54.1 35.6
DisCo [10] 56.1 80.3 61.8 40.0 59.1 43.2 34.7 55.9 37.4

RETRO 57.3 81.8 63.5 41.5 60.3 45.4 36.0 57.8 38.9
(3.7 ↑) (2.7 ↑) (4.8 ↑) (3.4 ↑) (3.5 ↑) (4.7 ↑) (3.0 ↑) (4.6 ↑) (3.6 ↑)

R-152

SEED [9] 54.4 80.1 59.9 38.4 57.0 41.0 33.3 53.7 35.3
DisCo [10] 56.6 80.8 63.4 39.4 58.7 42.7 34.4 55.4 36.7

BINGO [27] - - - 39.9 59.4 43.5 35.7 56.5 38.2
RETRO 57.5 81.9 64.1 41.4 60.6 45.4 36.1 57.3 39.2

(3.9 ↑) (2.8 ↑) (5.4 ↑) (3.3 ↑) (3.8 ↑) (4.7 ↑) (3.1 ↑) (4.1 ↑) (3.8 ↑)

Table 3: Object detection and instance segmentation results on VOC-07 test and COCO
val2017 using ResNet-34 as the backbone. The subscript in green represents the improvement
compared to the MoCo-V2 baseline.

4.4 Transfer to CIFAR-10/CIFAR-100
We conducted further evaluations to assess the generalization of representations obtained by
RETRO on CIFAR-10 and CIFAR-100 datasets, using ResNet-18/EfficientNet-B0 as a student
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and ResNet-50/ResNet-101/ResNet-152 as a teacher. The models were fine-tuned for 100
epochs, with an initial learning rate of 3 and the learning rate scheduler decreasing by a factor
of 10 at 60 and 80 epochs. All images were resized to 224×224, following the methodology
from [9] since the original image resolution of the CIFAR dataset is 32× 32. The results
presented in Figure 4 show that RETRO outperforms prior methods SEED and DisCo across
the datasets. Furthermore, the improvement brought by RETRO becomes more apparent as
the quality of the teacher models improves.
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Figure 4: Top-1 accuracy on CIFAR-10 (4(a), 4(b)) and CIFAR-100 (4(c), 4(d)) dataset.

4.5 Transfer to Detection and Segmentation
For segmentation and downstream detection tasks, we adopt the fine-tuning methodology
used in SEED [9] and DisCo [10], where all parameters are fine-tuned. For the detection task
on VOC [8], the model is initialized with an initial learning rate of 0.1, with 200 warm-up
iterations, and the learning rate is decreased by a factor of 10 at 18k and 22.2k steps. The
detector is trained for 48k steps, with a total batch size of 32. During training, the input
is randomly scaled from 400 to 800, and set to 800 during inference. For detection and
segmentation on COCO [17], the model is trained for 180k iterations with an initial learning
rate of 0.11. During training, the image scale is randomized from 600 to 800.

We also performed tests on detection and segmentation tasks for generalization analysis.
Faster R-CNN [22] based on C4 is used for object detection for VOC and R-CNN Mask [13]
is used for object detection and version segmentation for COCO. The results are displayed
in Table 3. In object detection, our method can yield clear improvements for both VOC and
COCO datasets. Also, as claimed by SEED [9], the COCO training dataset has 118k images,
while VOC has only 16.5k training images, so the improvement of COCO is relatively small
compared to VOC. Therefore, the gain from initialization weight is relatively small. RETRO
also has an advantage when it comes to instance segmentation tasks.

5 Conclusion
In this paper, we introduce the Reusing Teacher Projection head strategy (RETRO), a novel
approach for efficiently distilling self-supervised pre-trained teachers on lightweight models.
Additionally, we impose symmetry contrastive learning to improve the representation between
the student and mean student model. Despite its simplicity, our method outperforms prior
methods by a large margin, demonstrating the importance of the projection head in distillation
on lightweight models with fewer learnable parameters. RETRO does not introduce any
overhead during the inference phase. Our experiments show its superior performance across a
range of architectures and tasks.
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