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1 Proof of Convergence Conditions
Given an input source image xs

i and a network f parameterized by θ , we can formulate the
prediction result as f (xs

i ;θ). Moreover, the task gradient of each training process can be
expressed as:

gt =
∂L( f (xs

i ;θ),ys
i )

∂θ
, (1)

where L denotes the loss function. Similarly, given the updated xs
i , the task gradient of each

training process should be:

g′
t =

∂L( f (xs
′

N ;θ),ys
i )

∂θ
(2)

=
∂L( f (

√
1− ᾱn − γ̄nxs

i +
√

ᾱnI f
T +

√
γ̄nIp

T ;θ),ys
i )

∂θ
, (3)

where ᾱn and γ̄n denote adjustable hyper-parameters, and I f
T and Ip

T denote feature-level and
pixel-level target domain-specific information, respectively. For the domain gradient, we use
fd to represent the network to avoid confusion:

gd =
∂LBN(I

f
′

s,i , I
f

t )

∂θ
+

∂LBN(I
p
′

s,i , I
p
t )

∂θ
(4)

=
∂LBN( fd(

√
1− ᾱn − γ̄nxs

i +
√

ᾱnI f
T +

√
γ̄nIp

T ;θ), IT )

∂θ
, (5)

where IT denotes the target domain-specific information from both feature-level and pixel-
level. To preserve source domain data’s inherent characteristics, each input image xs

i is a
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Dataset Resolution Camera Number of samples Release year

DRISHTI-GS [3] 2047 × 1760 Unknown 50 Train + 51 Test 2014
RIM-ONE-r3 [1] 1072 × 1424 Canon EOS 5D 99 Train + 60 Test 2015

REFUGE [2] 2124 × 2056 Zeiss Viscucam 50 320 Train + 80 Test 2018

Table 1: Statistics of three fundus datasets used for the proposed method.

fixed value, which can be seen as a constant term. Hence, the variables of Eq 3 are I f
T and

Ip
T , which are decided by the number of target input data stream images N. To preserve the

data’s inherent characteristics, the following condition should be satisfied:

g′
t → gt. (6)

Based on Eq 1 and Eq 3, Eq 6 can be also written as:

f (
√

1− ᾱn − γ̄nxs
i +

√
ᾱnI f

T +
√

γ̄nIp
T ;θ)→ f (xs

i ;θ). (7)

Since ᾱn ,γ̄n and xs
i are all constant terms, the convergence condition of Eq 7 is:

I f
T , I

p
T → 0. (8)

For the domain transformation of source image xs
i , the domain gradient gd needs to satisfy

gd → 0. As shown in the main paper, the LBN used in our method is cosine similarity loss.
Hence, to satisfy gd → 0, the following condition should be satisfied:

fd(
√

1− ᾱn − γ̄nxs
i +

√
ᾱnI f

T +
√

γ̄nIp
T ;θ)→ IT . (9)

Similar to Eq 7, since ᾱn ,γ̄n and xs
i are all constant terms, the convergence condition of Eq 9

is:
I f
T , I

p
T → IT . (10)

As mentioned in Sec. 2 (in the main paper), IT is obtained through the target data stream,
which is a non-zero value. Therefore, according to Eq 8 and Eq 10, the convergence condi-
tion of domain transformation and the preservation of source domain data’s inherent charac-
teristics are opposite, which makes it impossible for the training process to satisfy the conver-
gence conditions of both simultaneously. Hence, we propose a Nash equilibrium strategy to
dynamically modify the diffusion steps to achieve a local optimal for our proposed network
for the best performance.

2 Datasets
We conduct experiments on three public glaucoma diagnostic datasets: DRISHTI-GS [3],
RIM-ONE-r3 [1] and REFUGE [2]. The detailed statistics of the datasets are shown in
Table 1.

3 Pseudo-algorithm
For better understanding of our proposed approach, we provide the pseudo-algorithm below
(Algorithm 1).
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Algorithm 1 DDF-UDA Algorithm

Require: Set of source domain data XS and set of target domain data XT .
Student model parameters θ , learning rate η ;
for xs

i in XS do
1:Input image xi to the student model;
2:Produce feature map F ;
3:Produce predicted mask yp;
4:Compute Lce = LCE(y,yp);
5:Update θ = θ −η∇θLce;
6:Sample N samples from XT denote as XT

N ;
for xt

n in XT
N do

7:Input image xt
n to the teacher model;

8:Produce feature-level target domain specific information I f
t,n;

9:Produce pixel-level target domain specific information Ip
t,n;

10:Update x
′
i,N =

√
1− α̂n − γ̂nxs

i +
N
∑

n=0
α̂nI f

t,n +
N
∑

n=0
γ̂nIp

t,n;

11:Input x
′
i,N to the student model;

12:Produce updated feature map F
′
;

13:Produce predicted mask y
′
p;

14:Produce feature-level domain specific information I f ′
t,n;

15:Produce pixel-level domain specific information Ip′
t,n;

16:Compute denoised segmentation loss L′
ce = LCE(y,y

′
p);

17:Compute LBN = Lcos(I
p
′

s,i , I
p
t )+Lcos(I

f
′

s,i , I
f

t );

18:ComputeLcon = σ [
N
∑

i=1
F · (logF − logF ′)];

19:Compute L= Lce +L′
ce +Lcon +LBN ;

20:Update θ = θ −η∇θL;
end for
21:Update Teacher model with θ using EMA;

end for
Ensure: Model parameters θ .
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(a) w/o training (b) Ours

Figure 1: Feature visualization with t-SNE. Red and blue dots denote the source and target
data, respectively. (a) A DeepLabv3+ model without any training. (b) A model trained with
DDF-UDA.

Image BL BL+DM BL+DM+NE Ours

Figure 2: Visualization of OD (green) and OC (blue) segmentation results for the ablation
study conducted from Drishti-GS to RIM-ONE-r3. BL: Baseline.
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4 Visualization Results

4.1 t-SNE
We show the feature visualization with t-SNE. As shown in Fig. 1, we conduct two different
settings on the test set of both Drishti-GS (source) and RIM-ONE-r3 (target). The results
demonstrate that our approach achieves promising performance in distinguishing source and
target samples.

4.2 Qualitative Results
We provide visualization results for our ablation studies conducted from Drishti-GS to RIM-
ONE-r3. As shown in Fig. 2, our proposed method achieves the best performance compared
with other network settings.
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