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1 Proof of Convergence Conditions

Given an input source image x; and a network f parameterized by 6, we can formulate the
prediction result as f(x];6). Moreover, the task gradient of each training process can be
expressed as:
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where £ denotes the loss function. Similarly, given the updated x}, the task gradient of each
training process should be:
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where @, and ¥, denote adjustable hyper-parameters, and I; and I; denote feature-level and
pixel-level target domain-specific information, respectively. For the domain gradient, we use

fa to represent the network to avoid confusion:
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where Ir denotes the target domain-specific information from both feature-level and pixel-
level. To preserve source domain data’s inherent characteristics, each input image x} is a
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Dataset | Resolution | Camera | Number of samples | Release year
DRISHTI-GS [3] | 2047 x 1760 Unknown 50 Train + 51 Test 2014
RIM-ONE-r3 [1] | 1072 x 1424 Canon EOS 5D 99 Train + 60 Test 2015

REFUGE [2] 2124 x 2056 | Zeiss Viscucam 50 | 320 Train + 80 Test 2018

Table 1: Statistics of three fundus datasets used for the proposed method.

fixed value, which can be seen as a constant term. Hence, the variables of Eq 3 are I; and
IZ, which are decided by the number of target input data stream images N. To preserve the
data’s inherent characteristics, the following condition should be satisfied:

gi — g (6)

Based on Eq | and Eq 3, Eq 6 can be also written as:

ST =8 = 35 + VO + /T3 0) — f(x5:6). @)

Since @, ,}, and x; are all constant terms, the convergence condition of Eq 7 is:
0,12 —o0. (8)

For the domain transformation of source image x;, the domain gradient g4 needs to satisfy
ga — 0. As shown in the main paper, the Lpy used in our method is cosine similarity loss.
Hence, to satisfy gqg — 0, the following condition should be satisfied:

Fa(\/T= Gy = T} + Bl + /Tl 23 0) = I ©9)

Similar to Eq 7, since &, ,%, and x} are all constant terms, the convergence condition of Eq 9
is:
=i, (10)

As mentioned in Sec. 2 (in the main paper), It is obtained through the target data stream,
which is a non-zero value. Therefore, according to Eq 8 and Eq 10, the convergence condi-
tion of domain transformation and the preservation of source domain data’s inherent charac-
teristics are opposite, which makes it impossible for the training process to satisfy the conver-
gence conditions of both simultaneously. Hence, we propose a Nash equilibrium strategy to
dynamically modify the diffusion steps to achieve a local optimal for our proposed network
for the best performance.

2 Datasets

We conduct experiments on three public glaucoma diagnostic datasets: DRISHTI-GS [3],
RIM-ONE-r3 [1] and REFUGE [2]. The detailed statistics of the datasets are shown in
Table 1.

3 Pseudo-algorithm

For better understanding of our proposed approach, we provide the pseudo-algorithm below
(Algorithm 1).
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Algorithm 1 DDF-UDA Algorithm

Require: Set of source domain data X5 and set of target domain data X 7.
Student model parameters 6, learning rate 1;
for x} in X S do
1:Input image x; to the student model;
2:Produce feature map F;
3:Produce predicted mask y;
4:Compute L., = Lce(,Yp);
5:Update 6 = 6 —nNVgL,;
6:Sample N samples from X7 denote as X[ ;
for X, in X, do
7:Input image xfn to the teacher model;
8:Produce feature-level target domain specific information ItJ_C s
9:Produce pixel-level target domain specific information I,I? .

10:Update x; y = /T — 8, — Fux] + %Oan s z Tl ;
11:Input x;l  to the student model; ’

12:Pr0ducé updated feature map F;

13:Produce predicted mask y,,;

14:Produce feature-level domain specific information IZ{ :,;
15:Produce pixel-level domain specific information I,’j :,;
16:Compute denoised segmentation loss L:’ce = Lce(y, y;,);

17:Compute Ly = wa(lp 1)+ Leos (I, 1F):

s, S, l’
18:ComputeL.,, = [): F-(logF —logF")];

19:Compute £ = L, + E ce+ Leon+LaN;
20:Update 6 = 6 —nVyL;
end for
21:Update Teacher model with 6 using EMA;
end for
Ensure: Model parameters 6.
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Figure 1: Feature visualization with t-SNE. Red and blue dots denote the source and target
data, respectively. (a) A DeepLabv3+ model without any training. (b) A model trained with
DDF-UDA.
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Figure 2: Visualization of OD (green) and OC (blue) segmentation results for the ablation
study conducted from Drishti-GS to RIM-ONE-r3. BL: Baseline.
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Visualization Results

4.1 t-SNE

We show the feature visualization with t-SNE. As shown in Fig. 1, we conduct two different
settings on the test set of both Drishti-GS (source) and RIM-ONE-r3 (target). The results
demonstrate that our approach achieves promising performance in distinguishing source and
target samples.

4.2 Qualitative Results

We provide visualization results for our ablation studies conducted from Drishti-GS to RIM-
ONE-13. As shown in Fig. 2, our proposed method achieves the best performance compared
with other network settings.
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