
LI, LIU, CAI: DDF-UDA 1

Rethinking Domain Adaptive Optic
Disc and Cup Segmentation in Fundus
Image through Dynamic Diffusion Flow
Canran Li
cali5184@uni.sydney.edu.au

Dongnan Liu
dongnan.liu@sydney.edu.au

Weidong Cai
tom.cai@sydney.edu.au

School of Computer Science
The University of Sydney
Sydney, Australia

Abstract

Impacted by the domain shift issue across varying fundus image datasets collected
from different medical centres and devices, the performance of a well-trained optic seg-
mentation network is usually affected when applied to another dataset with different dis-
tributions. To handle this issue, the unsupervised domain adaptation (UDA) strategy is
widely used to improve the generalization ability of deep learning networks by using un-
labeled data. However, existing UDA approaches for optic segmentation tasks are mostly
adversarial learning-based, which heavily rely on the balance between the source and tar-
get datasets to align the features. In this regard, we propose a diffusion-based framework,
named Dynamic Diffusion Flow Unsupervised Domain Adaptation (termed DDF-UDA),
for the cross-domain optic disc (OD) and optic cup (OC) segmentation in fundus images.
Specifically, we propose an adaption module based on diffusion procedure at both feature
and pixel levels to alleviate the cross-domain gaps. In order to modify the domain infor-
mation of the source image while minimizing changes to its content, we further propose
an adjustment strategy based on Nash equilibrium, which could dynamically modify the
diffusion steps. Experimental results on public datasets demonstrate that our DDF-UDA
can effectively leverage unlabeled data to achieve state-of-the-art performance in OD/OC
segmentation.

1 Introduction
Accurate segmentation of the optic disc (OD) and the optic cup (OC) from fundus images is
crucial for the clinical diagnosis of glaucoma [14]. In recent years, various OD/OC segmen-
tation methods based on deep learning have been proposed and achieved significant success
[27, 32]. However, the performance of these deep learning-based methods is limited when
applied to new datasets with similar content due to the domain gaps [1]. To address this chal-
lenge, unsupervised domain adaptation (UDA) methods have been introduced [7, 18, 21].

In the OD/OC segmentation UDA tasks, adversarial learning is utilized to minimize
the feature gap between different domains and demonstrate impressive results [16, 27, 31].
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BEAL [26] uses entropy-driven adversarial training strategies to strengthen the boundary
prediction of the target domain image and minimize the feature uncertainty. RDR-Net [6]
uses the variational auto-encoder (VAE) to reconstruct images and utilizes dynamic convo-
lution specific to entropy-driven adversarial learning for low-level feature refinement and
prediction map alignment, respectively. However, these adversarial learning-based UDA
methods heavily rely on the balance between the source and the target datasets. The break-
down of this balance will affect the effectiveness of the UDA methods [17]. If the scale of
the source dataset is much larger than the target one, it may cause model bias to the source
samples due to the strong inductive bias of the deep learning models. On the other hand, if
the source dataset is much smaller than the target domain, it may result in insufficient model
training, which further makes it difficult to obtain a reliable representation of the target do-
main [12, 15].

Hence, instead of using feature alignment or image reconstruction to reduce cross-domain
bias, we propose a cross-domain information fusion strategy through the diffusion model.
The diffusion model is a latent variable model that has recently been applied to generative
models and gets impressive outcomes [9]. Diffusion models consist of a forward diffusion
process and a reverse generation process, which can obtain a trajectory containing a sample
by repetitively adding Gaussian noise T times to any initial sample and create new data by
reverse traversing the Markov chain [3, 22]. Some work based on the diffusion generation
model has addressed the UDA problem by utilizing image generation to reduce the domain
gap [20, 29, 30]. Unlike these diffusion UDA methods for synthesized images, our approach
mainly focuses on the latent feature generation. Specifically, we propose a novel end-to-end
UDA network based on the guided diffusion model, which transfers the domain information
from the target domain into the source domain through forward diffusion processes.

Previous research [2] has shown that the Batch Normalization (BN) layer can reflect
domain-specific information. The output of the BN layer could be seen as a Gaussian distri-
bution with expectation equal to 0 and variance equal to 1. Inspired by recent research [4]
which proves the superiority of utilizing the diffusion model from a feature perspective, we
conduct diffusion on the feature-level. Accordingly, we define the output of the encoder’s fi-
nal BN layer and the decoder’s final BN layer as feature-level and pixel-level domain-specific
information, respectively. Then, the target domain’s feature-level and pixel-level features are
diffused into the source domain dataset as directional noise (which can be seen as guidance).
Furthermore, when applying the diffusion strategy to transform the source data, we aim to
maintain the content of the source domain images to the greatest extent possible during the
transition to the target domain. Therefore, we propose a Nash equilibrium strategy to adjust
the diffusion process. This approach ensures that the source domain data is effectively trans-
formed into the target domain while preventing over-transformation (which may lead to the
original source domain labels being unusable), thus augmenting the dataset.

The main contributions of this paper are summarized as follows: (1) We propose a novel
Dynamic Diffusion Flow Unsupervised Domain Adaptation framework, named as DDF-
UDA, which employs domain diffusion learning to tackle the UDA task associated with
joint OD/OC segmentation across diverse fundus image datasets. (2) Instead of using feature
alignment to bridge the gap between the source and target domains, DDF-UDA employs a
diffusion process at both the feature and pixel levels. This approach enables the transfer
of domain information from the target data to the source data, thus establishing domain
adaptation. (3) Given that the transformation from the source domain to the target domain, as
well as the maintaining of the data content inherent to the source, represent a contradictory
game theory problem, we propose a Nash equilibrium strategy to dynamically adjust the
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Figure 1: Overview of our proposed DDF-UDA framework. We use different colors to
represent student and teacher models (best views in color).

diffusion process to achieve an optimal solution.
We conduct extensive experiments on two kinds of UDA scenarios: imbalance UDA

(where a significant difference in data quantity exists between the source and target domains)
and traditional UDA. Experimental results demonstrate the effectiveness of the proposed
DDF-UDA compared with existing SOTA methods.

2 Method

2.1 Overview of the Framework

The purpose of UDA is to use the source domain data XS = {xs
i ,y

s
i}

Ns
i=1 and the unanno-

tated target domain data XT = {xt
i}

Nt
i=1 to optimize the segmentation model. Fig. 1 shows

an overview of the proposed approach. We propose a novel UDA paradigm based on the
diffusion model to improve the model’s generalization ability in the target domain dataset.
Specifically, our model adapts to different domain distributions by diffusing the domain in-
formation from the target dataset into the source domain which has supervised signals.

In detail, our framework employs a dual-stream structure. Given a student network and a
teacher network, we use Es&Ds and Et&Dt to represent the encoder&decoder from different
networks, respectively. When xs

i is input into the student network Es&Ds, N images from the
target dataset are passed to the teacher network Et&Dt simultaneously. Firstly, the source
domain feature map F of xs

i could be extracted by Es and the output from the BN layer of Es

is obtained as the feature-level source domain information I f
s,i. Then, with F passed to Ds,

the pixel-level source domain information Ip
s,i could be obtained through the BN layer of Ds.

As we once send N samples (which can be seen as a subset) from the target dataset to
the framework during each source data training step, we could treat this subset of the tar-
get dataset as the target data stream XT

N = {xt
n}N

n=1. The target data stream is input into the
teacher model to obtain a set of feature-level and pixel-level target domain-specific informa-
tion, denoted as I f

T = {I f
t,n}N

n=1 and Ip
T = {Ip

t,n}N
n=1, respectively. We regard I f

T and Ip
T as a type

of directional noise for conducting domain-level information diffusion on the source input
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image to achieve updated xs
′

i,N . xs
′

i,N is then resent to the student network, and the feature map

F
′

and the feature-level domain-specific information I f
′

s,i are both obtained through Es. F
′

is further passed to Ds to obtain the pixel-level domain-specific information Ip
′

s,i . As for the

updated xs
′

i,N , the initial label ys
i is still used as the supervision signal. Hence, one goal of

the optimization is to make sure F ≃ F
′
. Furthermore, from the UDA perspective, we strive

to ensure that I f
′

s,i ≃ I f
t,i, as well as Ip

′

s,i ≃ Ip
t,i, to secure the domain information transforma-

tion. Following [25], the student network is updated through optimizing, while the teacher
network is updated through exponential moving average (EMA):

θ
(i)
t = ωθ

(i−1)
t +(1−ω)θ

(i)
s , (1)

where θ
(i)
t denotes the teacher network parameters at ith, θ

(i)
s represents the student network

parameters at the same step, and ω is the EMA weight hyperparameter (ω = 0.999 in our
case).

2.2 Domain Diffusion Processing
Inspired by existing diffusion models [3, 9, 20], we adapt the forward process used for
generating diffusion models into a directed process (see Fig. 2). Given a real source domain
image sample xs

i ∼ q(x), the domain information transferring process could be formulated as
follows [9]:

q
(

xs
′

i,1:N | xs
i

)
=

N

∏
n=1

N
(

xs
′

i,n;
√

1−βnxs
′

i,n−1,βnI f
t,n

)
, (2)

αn = 1−βn, ᾱn =
n

∏
i=1

αi, (3)

xs
′

i,N =
√

ᾱnxs
i +

N

∑
n=0

√
1− ᾱnI f

t,n, (4)

where xs
′

i,N denotes the updated xs
i . The product ∏

N
n=1 indicates that the distribution is factor-

ized over n steps, and N represents a Gaussian distribution. Both αn and βn are adjustable
hyperparameters.

Additionally, except I f
t,i, we also introduce pixel-level domain information for the diffu-

sion process. For the pixel-level features, we aim to eliminate semantic information as much
as possible while maintaining domain information. Hence, we propose an assumption that
the image contains only two types of information: semantic level and domain level. We in-
troduce a Pixel-level Feature Extraction Threshold (PFT). Suppose after passing through the
dual-stream model, the segmentation results in a poor agreement between the two models
(below a specified threshold) while still maintaining similar performance (which can be seen
through the evaluation metrics). We assume that under this scenario, the output of the fea-
tures by the two decoders mostly consists of domain information [28]. Therefore, we further
adapt Eq. 5 as follows:

xs
′

i,N =
√

1− ᾱn − γ̄nxs
i +

N

∑
n=0

√
ᾱnI f

t,n +
N

∑
n=0

√
γ̄nIp

t,n, (5)

where αn and γn both denote adjustable hyperparameters.
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Figure 2: Diffusion adaptation processing. We use both the feature-level target domain
information I f

tN and the pixel-level target domain information Ip
tN to update image xs

i during
the diffusion process.

2.3 Optimization Processing

For optimization, we use the cross-entropy loss as our supervision loss for segmentation,
which can be denoted as Lce:

Lce =− 1
M

M

∑
i=1

ys
i log(pys

i
). (6)

Noted that Lce is applied to both the original source input xs
i and the updated source xs

′

i,N .
Similarly, the updated segmentation loss Lce′ are defined as:

Lce′ =− 1
M

M

∑
i=1

ys
i log(p

′
ys

i
), (7)

where M is the total number of pixels, and ys
i is the ground-truth label. pys

i
and p

′
ys

i
are the

predicted probability of xs
i and xs

′

i,N , respectively.
As mentioned in Sec. 2.1, we aim to induce the similarity between domain information

from both source and target data for good adaption performance. Additionally, the domain

characteristics of I f
′

s,i and I f
t,i, as well as Ip

′

s,i and Ip
t,i, need to be extremely similar to guarantee

that the domain state of the image xs
i transitions entirely from source to target. Therefore,

we propose the BN loss LBN related to domain information and the consistency loss Lcon to
ensure the consistency of the source domain supervision model to combine the supervision
signal to effectively facilitate model convergence. Lcon is calculated by Kullback-Leibler
divergence as follows:

Lcon = σ

[
N

∑
i=1

F ·
(
logF − logF ′)] , (8)

where σ denotes the activation function. LBN is calculated by cosine similarity as follows:

LBN = Lcos(I
p
′

s,i , I
p
t )+Lcos(I

f
′

s,i , I
f

t ), (9)
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Lcos =
1
N

N

∑
i=1

1−
I
′
s,i · It∥∥∥I ′s,i
∥∥∥ · ∥It∥

 . (10)

Hence, the total loss of the DDF-UDA framework can be formulated as

Ltotal = Lce +L′
ce +Lcon +LBN . (11)

Note that the dual-stream structure and the diffusion process are only employed during the
training phase. For inference, the test images are directly sent to the student network to
obtain the final prediction masks.

2.4 Nash Equilibrium

As mentioned in Sec. 1, due to the opposite convergence conditions for domain transforma-
tion and the preservation of source domain data’s inherent content (see details in the supple-
mentary materials), it is difficult to find the optimal solution for model parameters during the
training process. Hence, instead of setting a fixed number of target input data stream images
N, we set it as a dynamic one based on the training loss to force the training process to reach
a local optimum for the best performance of our method.

In detail, when N target samples are proceeded to transfer the domain information, which
will facilitate LBN reduction and convergence. However, this would significantly alter the
original information of the source image. Thus, Lcon will deteriorate. To this end, for the
LBN and the Lcon, their convergence conditions are inconsistent, making it challenging to
obtain a global optimal solution [5]. This situation presents a game theory problem: the
mathematical modeling of rational behaviour in interdependent situations. Therefore, our
goal is no longer to attain a globally optimal solution but to achieve local optimal situations
for each objective function.

Nash equilibriumis is a game theory strategy, which can dynamically adjust training
strategies to achieve local optimal solutions while ensuring the stability of the training pro-
cess [11, 23]. Drawing inspiration from the Nash equilibrium method, after assigning an
initial value to the number of target images, we use the LBN and Lcon values obtained in
each diffusion process to correct the number of target images N. During the diffusion pro-
cess, the LBN /Lcon ratio is noted as R1. If R1 is greater than 1, indicating that LBN is
greater than Lcon, it is necessary to increase N to decrease the LBN . Conversely, we need
to reduce the value of N. To this end, the training process will keep establishing a dynamic
competition until a state of equilibrium (Nash equilibrium) is achieved by both parties. The
following formula shows the objective of the Nash equilibrium strategy:

u1 (L∗
BN ,L∗

con)≥ u0 (LBN ,Lcon) , (12)

uN (L∗
BN ,L∗

con)≥ uN−1 (L∗
BN ,L∗

con) , (13)

where u0 denotes the first strategy, and u1 denotes the second strategy. uN and uN−1 denote
the strategy for the Nth and (N−1)th optimization, respectively. LBN and Lcon are the losses
without adjustment, and L∗

BN and L∗
con are the adjusted losses. For better understanding of

our proposed approach, we provide the pseudo-algorithm in supplementary materials.
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Method Drishti-GS → RIM-ONE-r3 RIM-ONE-r3 → Drishti-GS
DIdisc DIcup MIoUdisc MIoUcup DIdisc DIcup MIoUdisc MIoUcup

ρOSAL [27] 0.9153 0.8159 0.8957 0.8383 0.9096 0.8303 0.8614 0.8325
BEAL [26] 0.9208 0.8001 0.9003 0.8345 0.9293 0.8054 0.8927 0.8116
ISFA [16] 0.9252 0.8220 0.9059 0.8471 0.9324 0.8385 0.8961 0.8413

RDR-Net [6] 0.9215 0.8282 0.9028 0.8512 0.9434 0.8430 0.9124 0.8455
Ours 0.9572 0.8324 0.9551 0.8583 0.9265 0.8478 0.9186 0.8655

Table 1: Comparison OD/OC segmentation results when adapted from Drishti-GS to RIM-
ONE-r3 and from RIM-ONE-r3 to Drishti-GS.

3 Experiments and Results

We conduct experiments on three public glaucoma diagnostic datasets: RIM-ONE-r3 [8],
DRISHTI-GS [24] and REFUGE [19]. The detailed statistics of the datasets are shown in
supplementary materials. We conduct extensive experimental scenarios on OD/OC segmen-
tation for two types of UDA: imbalanced UDA and traditional UDA. For imbalanced UDA,
there is a substantial difference in the quantity of data between the source and target domains.
We select adapting Drishti-GS to RIM-ONE-r3 and RIM-ONE-r3 to Drishti-GS settings in
an imbalanced scenario. In the case of traditional UDA, we adopt the same settings as in the
previous works, utilizing the REFUGE dataset as the source domain and the Drishti-GS and
RIM-ONE-r3 datasets as the target domains.

3.1 Experiment Details

Evaluation Metrics Various commonly used metrics are used to evaluate the experimental
results. These include the Dice Similarity Coefficient (Dice), which offers pixel-level accu-
racy evaluation. We also employ Mean Intersection over Union (MIoU) to further compare
the segmentation performances of different approaches.

Implementation Details Due to the image size variance across different fundus image
datasets, we initially crop the original image to yield a 512× 512 Region of Interest (ROI)
centred on the OD. For computational efficiency, we subsequently resize the cropped image
to a 256×256 format as the input of the network. This study employs standard data augmen-
tation techniques to increase the sample size, incorporating strategies such as elastic transfor-
mation, Gaussian noise injection, random erasing, as well as random scaling and cropping.
For the segmentation network, we apply DeepLabv3+ with a pre-trained MobileNetV2 as
the backbone. The model is implemented on a workstation with one NVIDIA GeForce RTX
3090Ti GPU. For optimization, we set the batch size to 8 with the Adam optimizer using
“poly” learning rate policy. The initial learning rate is set to 0.001, with a pixel-level feature
extraction threshold set to 0.75. For the adjustable hyper-parameters, both ᾱn and γ̄n are set
to 0.01.

Citation
Citation
{Wang, Yu, Yang, Fu, and Heng} 2019{}

Citation
Citation
{Wang, Yu, Li, Yang, Fu, and Heng} 2019{}

Citation
Citation
{Lei, Liu, Xie, Zhao, Yue, and Lei} 2021

Citation
Citation
{Chen, Pan, and Xia} 2023{}

Citation
Citation
{Fumero, Alay{ó}n, Sanchez, Sigut, and Gonzalez-Hernandez} 2011

Citation
Citation
{Sivaswamy, Krishnadas, Joshi, Jain, and Tabish} 2014

Citation
Citation
{Orlando, Fu, Breda, Vanprotect unhbox voidb@x protect penalty @M  {}Keer, Bathula, Diaz-Pinto, Fang, Heng, Kim, Lee, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020



8 LI, LIU, CAI: DDF-UDA

Method Drishti-GS RIM-ONE-r3
DIdisc DIcup DIdisc DIcup

No Adapt 0.930 0.854 0.822 0.703
Upper bound 0.977 0.910 0.969 0.877

Hoffman et al. [10] 0.959 0.851 0.852 0.755
Javanmardi et al. [13] 0.961 0.849 0.853 0.779

ρOSAL [27] 0.965 0.858 0.865 0.787
BEAL [26] 0.961 0.862 0.898 0.810
ISFA [16] 0.966 0.892 0.908 0.822

RDR-Net [6] 0.971 0.893 0.918 0.840
Ours 0.969 0.893 0.962 0.850

Table 2: Quantitative comparison OD/OC segmentation results when adapted from REFUGE
to Drishti-GS and adapted from REFUGE to RIM-ONE-r3.

3.2 Performance of the Proposed Method
3.2.1 Results on imbalanced UDA settings

We report the results of our model under imbalanced UDA settings in Table 1. Specifically,
we first select DRISHTI-GS and RIM-ONE-r3 as the source and target domains, respec-
tively. We compare the proposed method with four state-of-the-art OD/OC segmentation
UDA methods, i.e., ρOSAL [27], BEAL [26], ISFA [16] and RDR-Net [6]. Table 1 re-
ports the segmentation results of adapting Drishti-GS to RIM-ONE-r3 and the segmentation
performance when adapting from RIM-ONE-r3 to DRISHTI-GS, with the best results high-
lighted in bold. For the convenience of description, the dice, and mIoU values of OD/OC are
expressed as DIdisc, DIcup, MIoUdisc, and MIoUcup.

Table 1 illustrates that in adaptive OD/OC segmentation tasks with imbalanced data, our
DDF-UDA consistently yields competitive results across various scenarios. As the results
shown in Table 1, which are performed on the Drishti-GS to RIM-ONE-r3 adaptation task,
our method achieves state-of-the-art performance on all evaluation metrics. Specifically,
DDF-UDA outperforms the prior work in terms of Dice of OD segmentation of 3.57%,
improving from 92.15% (by RDR-Net) to 95.72%. Additionally, our proposed method ex-
hibits remarkable performance in MIoU metrics for OD/OC segmentation. In particular, for
MIoUdisc, there were respective increases of 5.23% compared to RDR-Net. In addition, we
also report the results adapting from RIM-ONE-r3 to Drishti-GS. As shown in Table 1, un-
der the setting of adapting RIM-ONE-r3 to Drishti-GS, our proposed framework performs
better than existing methods on 3 out of 4 evaluation metrics. The above results validate
the effectiveness of DDF-UDA, which leverages information diffusion to bridge the domain
gap between the source and target domains. Notably, when the target dataset is larger than
the source one, our method proves especially effective in adaptation tasks by diffusing tar-
get domain information, surpassing the performance of adversarial learning methods which
rely on domain alignment. Fig. 3 shows the qualitative results of OD (green) and OC (blue)
segmentation adapted from Drishti-GS to RIM-ONE-r3.

3.2.2 Results on traditional UDA settings

To assess the performance of our method on traditional datasets, we employ the REFUGE
dataset as the source domain, and use Drishti-GS and RIM-ONE-r3 as the target domains
separately. For the results in Table 2, we compare our proposed method with six SOTA UDA
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Method Baseline DM NE PFT DIdisc DIcup MIoUdisc MIoUcup

Drishti-GS → RIM-ONE-r3
No Adapt ✓ 0.8952 0.7425 0.8938 0.8074

✓ ✓ 0.9530 0.8203 0.9510 0.8504
✓ ✓ ✓ 0.9580 0.8234 0.9558 0.8520
✓ ✓ ✓ ✓ 0.9572 0.8324 0.9551 0.8583

REFUGE → Drishti-GS
✓ 0.9298 0.8542 0.9201 0.8700
✓ ✓ 0.9543 0.8891 0.9611 0.8890
✓ ✓ ✓ 0.9628 0.8814 0.9629 0.8865
✓ ✓ ✓ ✓ 0.9686 0.8931 0.9640 0.9010

Table 3: Ablation study results of adapting Drishti-GS to RIM-ONE-r3 and adapting
REFUGE to Drishti-GS.

methods and two baselines. In addition to the four previously mentioned SOTA OD/OC
segmentation UDA approaches, we also compare the globally aligned method proposed by
Hoffman et al. [10] and the adversarial learning-based UDA algorithm by Javanmardi et al.
[13]. For the baselines, we also train a DeepLabV3+ with source data only (“No Adapt”)
and with annotated target data only (“Upper bound”), respectively.

The results in Table 2 show that DDF-UDA achieves highly competitive results under the
traditional UDA settings. On the Drishti-GS dataset, the Dice scores for OD/OC segmenta-
tion are nearly equivalent to the SOTA methods. In the adaptation from REFUGE to RIM-
ONE-r3, DDF-UDA achieves superior segmentation performance. Specifically, our method
achieves an impressive improvement on Dice score for OD segmentation (91.8% → 96.2%),
indicating a significant 4.4% gap and approaching the performance of fully supervised results
(96.9%). These reported results demonstrate that in the scenarios where the source domain
contains more data than the target domain, our proposed DDF-UDA consistently delivers
advanced UDA segmentation performance through dynamically diffusing target domain in-
formation. Some additional visualization results are shown in supplementary materials.

3.3 Ablation Study
To assess the impact of various modules within our proposed model, we conduct ablation
experiments to evaluate the effectiveness of each module. We conduct these experiments
using Drishti-GS as the source domain and RIM-ONE-r3 as the target domain (imbalanced
UDA setting), and then using REFUGE as the source domain and Drishti-GS as the target
domain (traditional UDA setting) for clarity and consistency. Each module is designated as
follows: DM for the Diffusion Module, NE for Nash Equilibrium, and PFT for Pixel-level
Feature Extraction Threshold. The outcomes of the different module implementations are
visually presented in Table 3. We utilized a model trained only on the source domain as our
baseline.

The results illustrate that as the DM, NE, and PFT modules are incrementally integrated
into the segmentation model, all evaluation metrics exhibited continuous improvement. It
is notable that in the absence of domain adaptation, the baseline displayed relatively poor
performance, with the lowest Dice scores for OD and OC in both two tasks. In contrast, the
DM module leads to an increase in Dice scores by 5.78% & 7.78% (imbalanced UDA) and
2.45% & 3.49% (traditional UDA) when compared to the baseline. It is important to high-
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Figure 3: Qualitative results of OD (green) and OC (blue) segmentation, which adapted from
Drishti-GS to RIM-ONE-r3.

light that the DM module significantly contributes to improve segmentation accuracy. This is
attributed to the DM module dynamically diffusing domain information from the target do-
main data stream into the source domain training model, thereby improving domain adapta-
tion effects. When the NE module is introduced into the network, segmentation performance
also shows varying degrees of improvement. Finally, experimental results demonstrate that
the addition of the PFT module can improve both OD/OC segmentation results.

4 Conclusion

In this paper, we propose a novel DDF-UDA method, to tackle the UDA for OD/OC seg-
mentation under both balanced and imbalanced data conditions. Instead of relying on feature
alignment to bridge the gap between the source and target domains, our method implements
a diffusion process at both feature and pixel levels to gradually transfer domain information
from target to source for adaptation. Considering that the transformation from the source
domain to the target domain, and the maintenance of the data content of the source domain,
is a self-contradictory game theory problem, we introduce a Nash equilibrium to govern the
diffusion process and reach an optimal solution. We conduct extensive experiments on differ-
ent UDA OD/OC segmentation settings, including traditional UDA settings and unbalanced
UDA settings, to demonstrate the effectiveness of our method.
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