
MISHRA, SUBRAMANYAM: LAYOUT FREE SCENE GRAPH TO IMAGE GENERATION 1

Supplementary Material: Layout Free Scene
Graph to Image Generation
Rameshwar Mishra
rameshwarm@iiitd.ac.in

A V Subramanyam
subramanyam@iiitd.ac.in

Indraprastha Institute of Infromation
Techonology
Delhi, India

1 Experimental Setup
Dataset. We train and evaluate our model on COCO-stuff and Visual genome dataset. We
process our data following existing works [1, 3]. After pre-processing, we get 62,565 image-
graph pair in training set and 5,506 image-graph pair in validation set of Visual Genome
dataset. COCO-stuff has 40,000 and 5,000 image-graph pairs in training and validation sets
respectively. We follow [3] to create synthetic scene graphs for COCO-stuff using spatial
relationship edges.

Evaluation Metrics. To show effectiveness of our approach we evaluate our model using
Inception Score (IS) [6], Frechet Inception Distance (FID) [2], Diversity Score (DS) [9], and
Object occurrence ratio (OOR) [8]. IS is a metric commonly used to evaluate the quality
and diversity of generated images in generative models. A higher Inception Score indicates
better-performing generative models that produce both realistic and diverse images. DS is a
measure used to quantify the variety and distinctiveness of generated samples for same input
scene graph. FID evaluates the similarity between the distribution of real data and gener-
ated data using feature representations extracted from a pre-trained Inception model. OOR
is the ratio of the objects detected in the generated image by YOLOv7 [7] with respect to
the objects given in the input scene graph. High OOR implies high consistency of generated
images with scene graphs.

Training Parameters. We use a pre-trained stable diffusion model [5]. Graph encoder is a
standard multi layer graph convolution network taking nodes and edges as input. dg for graph
encoder is 512, we take λ = 0.7 and β = 0.5. For reconstruction loss in diffusion, we guide
are training with the MSE loss between predicted and added noise. We use Adam optimizer
[9] with a learning rate of 1e-6. We fine-tune the Diffusion model for 62,000 iteration and
32,525 iterations for Visual Genome and COCO-stuff datasets respectively,with batch size
of 2. Discriminator is a 5 layer MLP, trained for 40 epochs with Adam optimizer.

2 Architectural Details

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Herzig, Bar, Xu, Chechik, Darrell, and Globerson} 2020

Citation
Citation
{Johnson, Gupta, and Fei-Fei} 2018

Citation
Citation
{Johnson, Gupta, and Fei-Fei} 2018

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen} 2016

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter} 2017

Citation
Citation
{Zhang} 2018

Citation
Citation
{Zhang, Meng, Li, Chen, Yang, Yang, and Sun} 2023

Citation
Citation
{Wang, Bochkovskiy, and Liao} 2023

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022{}

Citation
Citation
{Zhang} 2018



2 MISHRA, SUBRAMANYAM: LAYOUT FREE SCENE GRAPH TO IMAGE GENERATION

Hyperparameter Considered value

Input noise shape 32×32×4
Noise scheduler DDPM scheduler
Diffusion timesteps 1000
Autoencoder type KL-regularized
Learning rate scheduler constant
Unet’s CA resolutions 32,16,8

Table 1: Hyperparameter values for the dif-
fusion model. Unet refers to the denoising
network of diffusion. CA refers to cross-
attention.

Our architecture consists of three primary
components: the GAN based CLIP align-
ment (GCA) module, a text-to-image diffu-
sion model, and a graph encoder. This sec-
tion provides architectural details for these
components.

2.1 Diffusion Network

We use Stable Diffusion V1-4 checkpoint
[4] as our diffusion model. The hyperpa-
rameter values for diffusion model is given
in table 1. We employ the DDPM noise
scheduler with 1000 diffusion timesteps. To
generate 256×256 images, we utilize an in-
put noise latent of size 32×32×4.

Net. Layer(Input shape) Output Shape

Object Net. Linear (512) 512
ReLU 512
Linear (512) 512
ReLU 512

Triplet Net. Linear (3×512) 512
ReLU 512
Linear (512) 512
ReLU 512

Table 2: Architecture of the graph convolution layer. Object network and triplet networks
are joined Parallelly. All layers are sequentially added to create the respective network.

2.2 Graph Encoder

Following previous works [3] we use a graph convolution network to encode our scene graph.
Graph encoder consists of 5 graph convolution layers. Table 2 shows the architecture of a
single graph convolution layer. This layer consists of two parallel networks, one to predict
object embedding and the other to predict triplet embedding.

Table 3 illustrates the comprehensive architecture of our graph encoder. Initially, object
labels and relationship labels are fed into a vocabulary-based embedding layer. The input for
the triplet network in the graph convolution layer is formed by concatenating the embeddings
of the subject (S), relationship (R), and object (O) in a scene graph relationship triplet (S,
R, O). 5 graph convolution layers are sequentially added to predict the object and triplet
embeddings. In table 3, GraphConv takes two inputs, object embedding of size 512 and
512×3 dimension concatenated input for triplet network. It outputs 512 dimension object
and triplet embedding. We apply average pooling to get global object and triplet embedding.

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022{}

Citation
Citation
{Johnson, Gupta, and Fei-Fei} 2018



MISHRA, SUBRAMANYAM: LAYOUT FREE SCENE GRAPH TO IMAGE GENERATION 3

Net
Layer(Input type/shape) Output shape

Embedding Net. Object Layer (Label) 512
Relation Layer(Label) 512

Graph Net. GraphConv (512,512×3) 512,512
GraphConv (512,512×3) 512,512
GraphConv (512,512×3) 512,512
GraphConv (512,512×3) 512,512
GraphConv (512,512×3) 512,512

Projection Net. Avg Pool (NO ×512) 512
Avg Pool (NT ×512) 512
Linear (2×512) 512

Table 3: Architecture of graph encoder Network. Object layer and relationship layer are two
parallel embedding layers. Layers of Graph Network are sequentially connected. Projection
net consists of two parallel average pooling layers. Output of these pooling layers is con-
catenated and fed to a linear layer.

Finally, we project the concatenated global object embedding and triplet embedding to get
our 512 dimension graph embedding.

2.3 GAN based CLIP alignment module

This module follows a standard GAN architecture. We consider graph encoder as our gen-
erator and it’s architecute is given in table 3. Architecture of discriminator is given in the
Table 4. We use clip-vit-base-patch32 checkpoint of CLIP to get CLIP features for GCA.

Layer(Input shape) Output shape

Linear (768) 256
BatchNorm 256
LeakyReLU 256
Dropout 256
Linear (256) 128
BatchNorm 128
LeakyReLU 128
Dropout 128
Linear (128) 1
Sigmoid (1) 1

Table 4: All the layers are sequentially added
to create the discriminator network. We use a
negative slope of 0.2 for LeakyReLU. Dropout
probability is 0.3

3 Additional results

Qualitative ablation results for GCA.
Figure 1 demonstrates that outputs gener-
ated with the use of GCA are more con-
sistent with the input scene graph. For in-
stance, in the first row, the model with-
out GCA produces distorted birds, whereas
in the second row, incorporating GCA
leads to correctly spelled words in the im-
age.

Additional qualitative results of our
methodology versus existing approaches.
Figure 2 showcases additional results,
demonstrating the strong alignment of our



4 MISHRA, SUBRAMANYAM: LAYOUT FREE SCENE GRAPH TO IMAGE GENERATION

Bird

Bird

Bird

right of

right of
above

grass

surrounding

Stop sign

right of

Window

behind

Grass

Wall

Hill

above

Water

next to

near

Elephant

Grass

Dirt

Scene Graph W/O GCA With GCA

Figure 1: Qualitative results showing the effectiveness of GCA module. GCA refers to GAN
based graph alignment. W/O is abbreviation for without. Column 1 contains input scene
graphs, while Columns 2 and 3 display results generated without and with the use of GCA,
respectively.

method in generating images with the input scene graph. Our model produces diverse im-
ages. For instance, in row 3, both Canonical and SGTransformer generate outputs with a
blue train structure, aligning with the ground truth containing a blue train. In contrast, our
model generates an image featuring a red train. While our image maintains consistency with
the input scene graph, it also introduces distinct elements, setting it apart from the original.



MISHRA, SUBRAMANYAM: LAYOUT FREE SCENE GRAPH TO IMAGE GENERATION 5

SG2Im Canonical SGTransformer OursGround Truth

above

Dirt

Fence

behind

Tree

Elephant

above

Grass

below

Tree

bush

Bird

above

Sand

Sea

behind

Scene Graph

Horse

Gravel

below

Train

Rail-track

Tree

next-to

Person

on

Sea

sorrounding

Chair

Sand

above

Figure 2: Sample images generated using different existing methods for comparison. It can
be seen that our model generates high quality yet diverse images. Reference scene graphs
are slightly perturbed to check effectiveness of each method.

References
[1] Roei Herzig, Amir Bar, Huijuan Xu, Gal Chechik, Trevor Darrell, and Amir Globerson.

Learning canonical representations for scene graph to image generation. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXVI 16, pages 210–227. Springer, 2020.

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equi-
librium. Advances in neural information processing systems, 30, 2017.

[3] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1219–1228, 2018.



6 MISHRA, SUBRAMANYAM: LAYOUT FREE SCENE GRAPH TO IMAGE GENERATION

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
10684–10695, June 2022.

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022.

[6] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. Advances in neural information pro-
cessing systems, 29, 2016.

[7] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7464–
7475, 2023.

[8] Yangkang Zhang, Chenye Meng, Zejian Li, Pei Chen, Guang Yang, Changyuan Yang,
and Lingyun Sun. Learning object consistency and interaction in image generation from
scene graphs. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pages 1731–1739, 2023.

[9] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM
26th international symposium on quality of service (IWQoS), pages 1–2. Ieee, 2018.


