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Abstract

Real time surgical video semantic segmentation requires accurate per-frame perfor-
mance, inter-frame temporal consistency and high inference speeds. Additionally surgi-
cal guidance systems require a combination of spatial and temporal information to pre-
vent distracting temporal effects such as flickering. Designing models that learn effective
spatial-temporal representations poses two challenges. First, the relative importance of
temporal and spatial features given an architecture and a dataset is unknown, requiring
human intuition to design the model. Secondly, adding temporal information greatly
increases model size, which can negatively affect its inference speed and may lead to
overfitting. We propose ST-NAS, a novel Neural Architecture Search (NAS) framework
for optimising the balance between spatial and temporal operations in spatial-temporal
models. We introduce a regulariser that promotes faster inference speeds whilst balanc-
ing model performance. Components in the framework can be selectively used when
considering the speed-accuracy requirements of the final model. We apply this frame-
work to a private Partial Nephrectomy dataset and the public CholecSeg8K dataset. The
model discovered through ST-NAS achieved a significant inference speedup (50-154%)
with a marginal reduction in segmentation performance (1-5%). Experiments showed
that the architecture discovered through ST-NAS required minimal temporal operations;
supporting the effectiveness of architecture search in spatial-temporal network design.

1 Introduction
Automatic segmentation of surgical scenes can help train new surgeons [7], generate post-
operative analytics, and intra-operatively highlight critical structures and surgical instru-
ments [14]. Semantic segmentation of surgical videos is a key step to developing advanced
digital tools for surgeons. For intra-operative use, they must work in real time and must be
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temporally stable to prevent temporal artefacts from distracting surgeons. Many models have
been applied to surgical segmentation [6, 8, 9]. However, when trained without appropriate
temporal modelling, predictions can be unstable, resulting in poor temporal consistency and
worse performance. Whilst the addition of temporal context can alleviate these problems,
it also leads to a significant increase in computational cost and limits its ability to achieve
fast inference speeds [6]. The model must be accurate enough to be useful for a surgeon,
however this does not mean it requires perfect accuracy. Nor does it mean that improving
accuracy is always worth the cost of losing other desirable attributes. If a model is too slow
to process data in real time, it cannot be used intra-operatively, preventing surgeons from
gaining any benefit. A slow model will also risk lagging behind the data stream, causing the
model to be unusable in real-time settings. For these reasons, we believe sacrificing accu-
racy for inference speed in a controlled environment can sometimes be valuable even in the
surgical and medical imaging domains.

Designing spatial-temporal architectures generally relies on human intuition to determine
the balance between spatial and temporal features. Naïvely using convolutions with temporal
context can allow the architecture to learn spatial-temporal representations, but is computa-
tionally expensive and often leads to overfitting [10, 18]. The relative importance of spatial
vs temporal information is unknown without careful analysis [10]. Without this knowledge,
it is not possible to design optimal spatial-temporal architectures whilst a grid-search over
possible connectivity patterns is often computationally intractable.

Neural Architecture Search (NAS) has emerged as a solution to automate the search for
optimal architectures over large search spaces in computer vision [4]. Differentiable Neural
Architecture Search (DNAS) presents a computationally feasible approach, e.g. FBNet [19].
This motivates our use of DNAS to learn spatial-temporal architectures for video semantic
segmentation. In this work, we propose Spatial Temporal NAS (ST-NAS), a differentiable
NAS framework for spatial-temporal models, which balances both accuracy and inference
time when seeking the optimal architecture. ST-NAS can be applied to transformer back-
bones through an inference time regulariser. Our framework further introduces the use of
DNAS for optimising spatial-temporal convolutions in a temporal decoder. ST-NAS search
is lightweight and requires less than 10% of the total training time, making it a suitable
framework for training video segmentation models.

2 Related Work
Surgical video segmentation is an important surgical data analysis task and temporal mod-
elling ensures robustness against occlusions. [6, 9] developed models to improve temporal
consistency. A spatial-temporal decoder was presented using a Temporal Convolutional Net-
work (TCN) [6], whilst a novel hierarchical transformer employing a space-time shift was
presented in [9]. However, both methods depend largely on manual design decisions such as
in the TCN decoder of [6]. Our method enables us to learn the design of the TCN and the
balance between spatial and temporal representations (Section 3.3).

Various general DNAS methods have been developed to enable efficient architecture
search [11, 19] with particular success when applied to dense vision prediction tasks using
CNN backbones [19, 23]. However, NAS has seen less success when applied to transformer
architectures, which are competing with CNNs as computer vision backbones. For instance,
Swin transformer [12] produces hierarchical representations and relies on shifted-windows
that have complexity linear with image size. However, we show that it suffers from poor
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latency at inference (Table 1), so Swin is a prime candidate to be optimised through NAS.
Evolutionary NAS methods [1] have been applied to transformers but are computationally
expensive. Autoformer [1] searches for an optimal transformer through weight sharing and
weight entanglement to reduce the search space but used an evolutionary algorithm with high
computational cost. NASBert [20] required hundreds of GPU days for initialisation. This
makes the use of DNAS and the block based search of FBNet [19] attractive for developing
NAS methods and motivates the work presented in this manuscript (Section 3.1).

In the context of semantic segmentation from videos, attention has focused largely on
static models [2, 13] and there is a paucity of NAS frameworks for tackling spatial-temporal
models for semantic segmentation, especially those which depend on the use of TCNs in
decoders. TCNs have been used extensively in temporal models [5, 6] but suffer generally
from computational overheads and overfitting [10, 18] when applied to static encodings.
There have been NAS approaches towards temporal models in action recognition [16] and
signal processing [17]. NAS-TC [16] searches for optimal temporal convolutions but its
search space is limited to changes in spatial feature extraction and temporal operations are
handed-crafted; limiting its ability to generalise. In comparison, our learning framework
automatically searches for optimal temporal representations (Section 3.3) through the depth
of the encoder but also the necessary temporal operations.

3 Methods
We present Spatial-Temporal NAS (ST-NAS), a novel learning scheme to search for the opti-
mal spatial-temporal network for video semantic segmentation. Our aim is to automatically
search for an architecture with reduced inference time and able to maintain high accuracy
relative to a baseline architecture. Our framework is applied to spatio-temporal models with
an encoder-decoder architecture such as in [6] which uses a Swin Encoder to generate per-
frame features for a temporal TCN decoder. The encoder E(·) processes a temporal sequence
of RGB frames xt ∈ R3×H×W where t indexes the time in a sequence T ∈ {t −w, t} with a
temporal window w. The encoder processes each frame t sequentially such that ft = E(xt),
where ft ∈ RL×H×W is a spatial feature representation and L is the number of feature maps.
A temporal decoder D(·) with TCNs processes the temporal feature batch fT and predicts the
segmentation mask st = D(fT ) for time t.

Our NAS learning scheme simultaneously tackles the inference speed of transformer-
based encoders whilst discovering the optimal balance of temporal operations in a decoder.
In Section 3.2, we use NAS to discover the optimal depth of the encoder to improve inference
speed whilst balancing the quality of its feature representations. In Section 3.3 we develop
the NAS framework for learning the optimal combination of spatial and temporal operations
to achieve enhanced segmentation performance.

3.1 Differentiable NAS
The search space of a NAS algorithm defines a set of candidate architectures discoverable
by the algorithm. The search space in DNAS is formed by creating one architecture that
represents the entire search space, which is defined as a supernet. We adopt a block based
layerwise search space similar to FBNet [19], in which the supernet is formed of searchable
blocks but unlike FBNet, all candidate operations are run in parallel rather than single opera-
tions being sampled at each step, as in DARTS [11]. The output of each candidate operation
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Figure 1: We convert the encoder to a supernet. Each layer in the stage is weighted and the
output becomes the weighted sum of each layers output.

is weighted by its own architectural weight, α
j

i where i indexes the supernet layer and j
the operation. This α

j
i weights each operation within the supernet. Whilst the supernet is

trained, all network parameters are optimised, including all operations within each supernet
block and the set of all A = {α

j
i }

∀ j
∀i values. During training, the supernet learns to increase

the α
j

i for optimal operations that minimise the loss function, and learns to decrease the α
j

i
for sub-optimal operations. At the end of training, the final proposed architecture is chosen
by selecting only the operations with the largest αi = argmax j

(
α

j
i

)
for each layer i. DNAS

consequently searches an combinatorial architecture space in tractable time.

3.2 Encoder NAS for speed
To improve the inference speeds while achieving competitive accuracy, we propose to apply
DNAS to the encoder. Typically, DNAS is applied to select the optimal operations, network
depth and network width; however, as our goal is to reduce inference time and keep search
cost low, we limit our search space to find only the optimal depth. Limiting the search space
can reduce search cost and improve final performance [15]. To find the optimal depth of an
encoder composed of sequential blocks, we modify the traditional DNAS to form a supernet
by taking the original encoder architecture and converting each block within it as depicted in
Fig 1. For each i-th block, a weight αi is assigned with the aim of learning the importance of
the block. Then, the output of the block is the weighted sum of the layer outputs instead of
the output of the final layer. This is similar to the concept of applying skip connections, but
with the addition of the architectural weights. This novel concept can potentially be applied
to any encoder with a sequential structure of blocks. To formalise this concept, a traditional
encoder with sequential blocks can be written as f=E(x) = ei(ei−1(. . .e2(e1(x)) . . .)), where
N is the number of blocks of the encoder. We propose to convert the previous to

f = E(x) =
N

∑
i=1

αi fi =
N

∑
i=1

αiei(αi−1ei−1(. . .α2e2(α1e1(x)) . . .) (1)

where fi is the feature map produced by layer i-th block, and αi is its architectural weight.
Note that the temporal component t has been omitted for clarity in the above equation.

Each layer within a stage uses the outputs of the previous layer, meaning we can only
remove layers from the end of the stage. During the depth shrinking process, we consider
each a layer, starting from the last (N) and move towards the first (N-1, N-2, ..., 1). We
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Figure 2: ST-NAS searches for the optimal spatial and temporal operations of each layer of
the TCN. a) To convert to a NAS architecture, the 3D convolutions are replaced with with
supernet blocks. Within each supernet block candidate operations are applied in parallel their
outputs are combined via weighted sum. We replace each 3D conv with two supernet blocks,
to allow equivalent spatial-temporal operations. The weighting α is learnt during training.
b) Once the training is complete, the operation with the largest α is kept and the others are
discarded. This results in the final architecture.

remove the i-th layer if αi < 1 and continue to the i−1th layer. If the layer’s αi ≥ 1, we stop
the algorithm and the remaining layers form the final encoder architecture. We apply this
algorithm to each stage of the encoder.

When training the supernet encoder in this way, the αi values will naturally increase with
depth (i) as subsequent layers will further refine the features and provide more utility. To
account for the cost of these layers during the supernet learning, we add an L1 regularisation
term to the loss. For each layer, the inference time for that layer is calculated. We regularise
the alpha weights as the weighted sum of layer inference times. In practise, this encourages
the discovery of architectures by regularising proportionally to their inference time cost.
Such regularisation has been effective in other DNAS methods [17, 19].

min
W,A

L( f (W,A,x),y)+λ

N

∑
i=1

αisi, (2)

where L(·) is the loss function, f is the model’s forward pass operation, W are the weights
of the model, A is the architecture of the model, x are the input data, y are the ground truth
segmentation masks, λ is a regularisation weight, and si is the inference time for that block.
Note that while larger values of λ will produce faster architectures but with lower accuracy,
smaller values will produce architectures with higher accuracy but slower inference. By
weighting with the α , we allow the regularisation to influence the architecture during DNAS.
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3.3 Decoder NAS for performance

The decoder in a spatial-temporal model combines spatial and temporal information, often
using 3D convolutions. Decomposing 3D convolutions into their spatial and temporal con-
volutions can improve performance and greatly reduce computational cost [18]. In addition,
the importance of spatial and temporal information varies between datasets. We propose
to tackle this problem by modifying the decoder and searching for the optimal sequence of
spatial and temporal convolutions to apply. Specifically, we apply a simple differentiable
NAS approach. We define a set of candidate operations, including spatial and temporal op-
erations: dilated 2D spatial conv, depth separated 2D spatial conv, dilated 1D temporal conv
and the identity function. We use kernel sizes of 3 and 5, bringing the total operations to
3× 2+ 1 = 7. At each layer i, we apply all the candidate operations in parallel and output
the weighted of sum of their outputs. This forms a supernet, Fig 2, as described in Sec-
tion 3.1. Similar to Section 3.2, the weighting of each output is based on that operation’s
α

j
i , however the encoder and decoder NAS steps are performed separately. We train the su-

pernet and then trim all operations except for those with the highest α weights at each layer.
This results in a novel decoder that uses 2D spatial and 1D temporal convolutions.

4 Experiments and Results

Datasets. We validate our approach with two datasets; a private dataset of image sequences
from partial nephrectomy (PN) procedures and the publicly available CholecSeg8K dataset
which contains image sequences from cholecystectomy procedures [8]. The PN dataset con-
sists of 53,000 images from 137 procedures annotated with segmentation masks for four
classes (kidney, liver, renal vein, and renal artery). Short video clips of 15 seconds were
annotated at 10 FPS. The images were labelled by trained non-medical experts under the
supervision of an anatomy specialist, using annotation guidelines validated by surgeons.The
CholecSeg8K dataset consists of 8080 images from 17 videos of the Cholec80 dataset anno-
tated at 25FPS[8]. Images are annotated with segmentation masks containing 13 classes
(background, abdominal wall, liver, gastrointestinal tract, fat, grasper, connective tissue,
blood, cystic duct, l-hook electrocautery, gallbladder, hepatic vein and liver ligament). For
both datasets we used the same train/val splits defined in [6].

Metrics. We assess the model’s inference speed with Frames Per Second (FPS) and the
segmentation accuracy with the Mean Intersection Over Union (mIOU). FPS was calculated
from inference time. FPS = 1/Tin f Inference time was measured as time to encode one
image plus time to decode a full 11 frame encoding window. i.e. the time to process one
frame in a real application. The inference time was averaged over 1000 frames. The floating
point operations (FLOP) count is commonly used to measure a model’s computational cost.
However, during inference, factors such as parallelisation and GPU synchronisation can also
impact the speed. To avoid confusion, we do not report FLOP, as it does not directly correlate
with inference speed.

Model. The NAS framework is applied to the spatial-temporal model of [6]. The original
model used Swin-B as the encoder which we provide as a baseline. However, as our objective
is to accelerate the model, we extend from the Swin-T backbone. Swin-T has fewer layers
and a smaller embedding dimension than Swin-B. The Swin transformer is comprised of 4
stages. Each stage is converted to make the decoder a supernet as described in Section 3.2.
We train this supernet encoder on the PN dataset for just 5 epochs to learn these α values
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Table 1: Results on PN and CholecSeg8K datasets. Our proposed model uses TCNNAS
decoder, Full Channels (FC) and our shortened Swin encoder to significantly increase FPS.
Full Channels (FC) removes the channel reduction layer between the encoder and decoders.

Model Swin TCNNAS FC Params FPS PN CholecSeg8K
Encoder mIOU mIOU

Swin-B † Base × × 95.9M 14.7 60.3 53.2
Swin-T † Tiny × × 34.4M 23.1 60.5 52.3
NAS-Unet [22] † - × × 13.9M 34.8 27.1 40.4
HR-NAS [3] † - × × 10.2M 9.4 36.3 42.2

SP-TCN [6] Base × × 102.6M 12.6 70.7 57.0
Tiny × × 40.4M 20.5 73.9 54.3

Swin Short Short × × 28.9M 24.8 72.3 51.0

Full Channels Short × ✓ 33.0M 28.0 68.3 50.8

ST-NAS (Ours) Short ✓ ✓ 39.0M 31.9 69.5 51.5

†Non-temporal model. i.e. time window=1

and then find the final model, which we name Swin Short. Swin Short stages have depths of
1,2,3,2 shortened from the Swin-T’s 2,2,6,2. The final model is then trained for 25 epochs.

We additionally remove the expensive 3D convolution applied between the encoder and
decoder used to reduce the channels. We refer to this as the full channel (FC) modifica-
tion. Allowing full channels to enter the SP-TCN costs little but saves time on the expensive
channel reducing convolution. For the decoder, SP-TCN uses dilated 3D convolutions. We
convert the SP-TCN to a supernet as described in Section 3.3. We train this supernet decoder
on the PN dataset for 5 epochs to find the final model which we name TCNNAS. The discov-
ered architecture is shown in Fig 2. It uses no temporal convolutions and so the only temporal
processing is performed by the initial 3D conv that was not part of the dilated TCN layers
and therefore not part of the search. The architectures discovered for the encoder and de-
coder on PN were then applied to CholecSeg8K. This was required as CholecSeg8K is much
smaller and we found that even the baseline models tended to overfit. ST-NAS introduced
more parameters, causing more overfitting and the NAS performed poorly.

Experimental setup. Models were trained on V100 GPUs using PyTorch 2.0.1. The
models were trained with: Batch size 16, learning rate 10−4, time window of 11, cross
entropy loss, AdamW optimiser with 10−3 weight decay and 0.9 momentum. Images were
resized to width 576, height 320 pixels with 3 colour channels. Images were augmented with
random {-10,10} degree rotation and horizontal flips .

Results. Our results are shown in Table 1 and Fig 3. We provide baselines to compare
to [6] as newer versions of PyTorch have altered performance. Fig 3. shows the effect of
the encoder NAS on the inference speed (brown arrow). A considerable 21% FPS gain is
made with a small drop in performance (-1.6% PN, -3% CholecSeg8K). To further develop
the FPS, we analysed the inference time of layers within the model and found an expensive
channel reduction between the encoder and decoder. The effect of removing and using full
channels is shown in Fig 3 as the red arrow. This manual change is specific to the SP-TCN
base model, but it gives a 13% increase in FPS, although with a mIOU reduction (-4% PN, -
0.2% CholecSeg8K). TCNNAS is shown as the grey arrow in Fig 3. TCNNAS recovers some
lost mIOU (+1.2% PN, +0.7% CholecSeg8K) and further boosts the model FPS (+14%).
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(a) (b)

Figure 3: (a) mIOU vs FPS for PN dataset. (b) mIOU vs FPS for CholecSeg8K dataset.
Arrows indicate the effect of each adaptation step. Effect of Encoder NAS: Change from
applying NAS to the encoder of the model. Effect of Full Channels: Change from passing
all channels to decoder. Effect of TCNNAS: Change from applying NAS to our TCN-based
decoder. NAS-Unet and Swin Base + SP-TCN are shown as comparison baselines. NAS-
Unet has a slightly faster FPS, but with a greatly reduced mIOU.

For PN, an initial improvement to speed and mIOU is given by simply using Swin-
T as the encoder, therefore we compare our models to Swin-T. Together, our modifica-
tions increased speed 56% and only reduced mIOU 4.4% in comparison to Swin-T + SP-
TCN.Regarding CholecSeg8K, Swin-T baseline performed worse than the Swin-B, there-
fore we compare with Swin-B + SP-TCN. Our final method provides a 2.54× speedup but
with a significant drop in mIOU (4.5%) in comparison to Swin-B. Compared to Swin-T +
SP-TCN we see a 56% speedup with a 1.5% reduction in mIOU. A better compromise for
CholecSeg8K, might be to use FC and TCNNAS with Swin-T encoder, which gets the best
performance on CholecSeg8K but is 67% faster than Swin-B + SP-TCN.

NAS-Unet had the highest FPS but reached relatively low MiOU of 27.1% and 40.4%
on PN and CholecSeg8k respectively, possibly because it’s smaller size and U-Net backbone
lacked the expressivity required for this task. HR-NAS was similarly unable to achieve high
MiOU scores but also suffered from the lowest FPS. Both NAS-Unet and HR-NAS models
were non-temporal but were unable to match the MiOU of the Swin non-temporal model
baselines.

We benchmarked our model against NAS methods [3, 22] and strong baselines such
as Swin [12] and SP-TCN [6]. We have demonstrated consistently superior performance
compared to NAS-Unet and HR-NAS whilst discovering an architecture more amenable to
real-time deployment. NAS-UNet [22] achieves high FPS whilst significantly underperform-
ing compared to our method. Similarly, HR-NAS [3] performed poorly compared to our
method and yields an architecture unsuitable for real-time use. When compared to Swin-
Tiny [12] and SP-TCN-Tiny [6], our method made a significant improvement in throughput
with marginal loss in performance; resulting in an architecture optimised for real-time use.
The slight decrease in MiOU has a minimal effect on the qualitative changes (Fig. 4). How-
ever the improved FPS of our model is clear in our supplementary video. We found that using
a non-causal time window, i.e. with future frames: T ∈ {t −w/2, t +w/2} had no signifi-
cant effect on results. Training our final model with a causal TCN increased performance by
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Original Image Ground Truth Swin-T + SP-TCN ST-NAS
(Ours)

Figure 4: Comparisons between our method and Swin-T SP-TCN for semantic segmentation
of CholecSeg8K images [8]. Second row is the next frame in the sequence. As we are aiming
to accelerate the network while maintaining performance, there is little difference between
the qualitative appearance of the outputs. Background, Abdomen wall, Grasper,
Electrocautery, Liver, Fat, Gallbladder, Gastrointestinal tract and Hepatic vein.

0.7% MiOU on CholecSeg8K, illustrating suitability for causal or non-causal applications.
Training time. Our NAS method required less than an hour to search for the correct

encoder depth and 1.8hrs to search for the optimal decoder operations. These costs were
offset by the faster training time of Swin Short and TCNNAS. Swin Short trained in 23.5hrs
and Swin-T in 26.1hrs. The TCNNAS and SP-TCN required 5hr and 6.9hrs respectively.
This means our overall method was trained 2hrs (6%) faster than Swin-T + SP-TCN and
the NAS search only cost 9.7% of our overall training time. The other NAS benchmarks
NAS-Unet and HR-NAS required 9.7hrs and 7.4hrs respectively.

5 Discussion
ST-NAS is 56% faster by optimising encoder depth and the balance of spatial to temporal
operations in the decoder, with marginal reductions in mIOU of 4.6% on PN. ST-NAS finds
the right balance between temporal and spatial information for a spatio-temporal model. In
fact, the experiments revealed that using minimal temporal operations obtains better results,
which is counter-intuitive, showing the value of NAS over architecture design lead by human
intuition.

The decoder architecture discovered is shown in Fig 2. This architecture used several
identity functions in its early layers, followed by depth separated and dilated spatial convo-
lutions. Interestingly, no temporal convolutions were used by the TCNNAS. This means that
other than the initial 3x3x3 conv used as the first layer of the TCNNAS, there are no other
temporal elements. This shows only lightweight temporal operations are required for these
tasks, saving the use of computationally expensive operations seen in the baseline. However,
temporal information is important as non-temporal versions of these models (i.e. Swin-T)
performed worse as seen in table 1. This suggests designing spatial-temporal models by
human intuition might not be optimal, as the importance of temporal information may be
counter-intuitive [10].

ST-NAS provides a lightweight and efficient training scheme, decreasing total training
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time in comparison to the baseline temporal models. In contrast, existing methods such
as AutoFormer [1] required extensive training of 500 epochs for their respective supernet
training. This makes ST-NAS a suitable option for low-resources settings that cannot afford
expensive supernet training. We found that models discovered by architecture search with
PN data, can be applied effectively to CholecSeg8K. We also found that CholecSeg8K an-
notations were inconsistent over time, with some annotations varying greatly from frame to
frame. We believe this added to the difficulty in training a temporal model on CholecSeg8K.
DNAS methods can find non-optimal architectures, with lower-parameter operations often
being favoured due to them converging faster [21]. To mitigate these issues, we used warm-
up epochs and inference time regularisation. Ultimately this was less of a problem for our
use case, where smaller operations were desired for faster inference.

Conclusion In this paper, we propose ST-NAS, a DNAS algorithm for improving FPS
on spatial-temporal models. Our final models were 56% faster than the baseline with a small
4.6% drop in mIOU. Our NAS search was cheap and in fact reduced overall training time for
the models. Future work should search for the optimal width of the encoder layers to find
further optimisations.
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