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Abstract

Dynamic convolution enhances model capacity by combining multiple kernels based
on input features, offering significant improvements over traditional convolution in vari-
ous vision tasks without substantially increasing computational complexity. However, it
solely relies on current input features to generate kernels, overlooking the generation pro-
cess in previous layers. This results in sub-optimal kernel generation that limits the rep-
resentational power of dynamic networks. To address these issues, we propose a separate
yet coupled network to learn layer-wise kernel representation. The kernel representation,
along with the feature representation, can be easily used to generate kernels by a small
network and is updated layer-by-layer based on the kernel representation from the previ-
ous layer and the new feature representation of the current layer. To further complement
the learning network, the initial kernel representation begins with low-frequency image
features, and the final output kernel representation is concatenated with the feature repre-
sentation for classification. Extensive experimental results show that the proposed kernel
representation improves the network capacity and brings noticeable accuracy boost for
various backbone architectures, e.g. +2.5%∼3.9% on ResNets, +3.8%∼6.0% on Mo-
bileNets, +0.8%∼6.3% on vision transformers and +1.8% on PoolFormers.

1 Introduction
In the past few years, there has been remarkable progress in neural network structures, in-
cluding deep Convolutional Neural Networks (CNNs) [4, 5, 11, 17, 19, 20, 21, 27], Vi-
sion Transformers (ViTs) [3, 23], MLP-based networks [22, 24], and pooling-based net-
works [29]. These networks have been widely used as backbones in various vision tasks.
Several studies have also focused on developing new modules and components to enhance
the performance of existing backbones, especially CNNs. These modules include Squeeze-
and-Excitation [7], CBAM [26], GE [6], and ECA [18], which improve the feature output of
a standard convolution layer.

More recently, some research works [1, 12, 13, 14, 15, 28] study how to directly im-
prove the convolution operation itself. One representative solution is dynamic convolution,
which adaptively chooses and combines a set of kernels according to the input features of the
current network layer. Conditionally Parameterized Convolutions [28] and Dynamic Convo-
lution [1] are the pioneer works that first propose to linearly combine a set of convolutional
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ViT-Tin\ 72.2 76.6
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6�.56�.5

�2.2�2.2
�1.��1.�

�0.3�0.3

�6.2�6.2
��.2��.2

�3.��3.�

�6.6�6.6
�5.5�5.5

�4.2�4.2

��.���.� ��.0��.0

TR
S-

1 
A

cc
 (%

) R
n 

Im
ag

eN
eW

66

70

74

7�

VLT-NaQR VLT-TLQ\ MRbLOHNHWV2 RHVNHW-18 RHVNHW-50 PRROFRUPHU-S12

BaVeOiQeBaVeOiQe  + KeUQeO ReSUeVeQWaWiRQ + KeUQeO ReSUeVeQWaWiRQ
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Figure 1: (a) shows the classification improvements of our KR to different backbones on
ImageNet. (b) and (c) show the T-SNE visualizations of feature distributions from 20 classes
extracted from ViT models trained with and w/o kernel representation (KR). By contrast,
KR has shown to be effective in clustering intra-class samples, demonstrating its superior
capability in modeling semantic information.

kernels to generate a sample-adaptive kernel for the convolution at the current layer, where
the coefficients depend on the input features of the current layer. These works are followed
by several other ones [12, 13] to explore different ways of generating kernels as functions of
input features to further improve the representation capacity. Instead of linear combination,
WeightNet [15] uses a light-weight network with globally pooled features as input to directly
generate the parameters for the kernels. Adaptive kernel generation has offered notable ad-
vancements over standard kernel convolution by enhancing model capacity with little extra
computational cost. However, existing works use only current input features for kernel gen-
eration, without taking into account of what kernels were dynamically generated in previous
layers. It results in sub-optimal kernel generation that employ a fixed kernel generation strat-
egy on features obtained from dynamic kernels. This limits the precision and efficiency for
dynamic kernel generation and hence representational power of dynamic networks.

In this paper, we introduce a novel kernel representation (KR) addressing challenges
in dynamic convolution: the disconnect between input features and dynamic kernels, and
insufficient information for kernel generation. Our KR is formulated by a tri-input network
comprising: (1) parameters for current layer kernel generation, (2) globally pooled current
input features, and (3) the kernel data from previous layers, encapsulating historical feature
generation. This KR, combined with current feature data, guides the subsequent layer’s
kernel generation. For instance, if earlier layers predominantly chose dog-related kernels
given a dog image, the current layer, informed by its KR, can more adeptly generate relevant
kernels for dog-associated features. t-SNE visualizations in Fig. 1b and 1c demonstrate
that our dynamic model with KR better clusters samples of the same class compared to its
counterpart without KR. Moreover, our method integrates extra data beyond feature maps for
kernel creation. With KR encompassing kernel and feature representations from preceding
layers, the current layer can make more comprehensive decisions for kernel generation.

We integrated the kernel representation-based dynamic convolution into key backbone
architectures like ResNets [4], Vision Transformers [3], MobileNetV2 [17], and PoolForm-
ers [29], then assessed their performance on the ImageNet-1k [2] benchmark. Figure 1a
displays the enhanced performance of models using kernel representation over fixed ker-
nel counterparts. Results reveal dynamic networks with our proposed kernel representa-
tion significantly boost backbone network accuracy: increases range from +2.5% to 3.9%
for ResNets, +3.8% to 6.0% for MobileNets, +0.8% to 6.3% for Vision Transformers, and
+1.8% for PoolFormers. These also surpass other baseline dynamic convolution networks.
comprehensive ablation studies confirms the effectiveness of our kernel representation both
at the micro layer and overall network levels.
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Figure 2: Architecture of a Kernel Representation Layer. In addition to the input feature
representations, we use a kernel representation to preserve the semantic information of the
dynamic features. We create a complete global representation of the input features with
fusion of feature representation with the kernel representation. The generated kernels are
applied to the input features, and the output kernel representation is passed to the next layer.

2 Related Works
Recent years have seen a surge in research on sample-adaptive convolution due to its effi-
ciency in enhancing CNN model capacity. Early methods like Conditionally Parameterized
Convolutions (CondConv)[28] utilize a basic routing function to compute dynamic coef-
ficients for kernel aggregation, creating sample-adaptive kernels for convolution with input
features. Another foundational method, Dynamic Convolution (DyConv)[1], employs a soft-
max function to normalize the coefficients for kernel combination, initializing the tempera-
ture high to boost multiple kernel training efficiency. DyNet [31] takes a similar approach
in linearly combining kernel weights but allows independent coefficient generation for each
output channel, enhancing flexibility.

Context-Gated Convolution (CGC)[14] dynamically adjusts convolution layer kernel weights
through a module influenced by global context. WeightNet[15], rather than linearly combin-
ing learnable kernels, calculates kernels for each sample via a sub-network, enhancing kernel
flexibility and bolstering the model’s capacity. DCD [13] utilizes matrix decomposition and
dynamic channel fusion to streamline sample-adaptive kernel generation. The more recent
Omni-dimensional Dynamic Convolution (ODConv) [12] offers an advanced kernel gener-
ation approach. It determines the final convolutional kernel considering four dimensions:
kernel size, input and output channels, and candidate kernels, boosting the prowess of dy-
namic convolutions and delivering competitive results.

Current dynamic convolution techniques only generate kernels for individual layers,
overlooking inter-layer feature dependencies in deep neural networks, which limits their
performance. We suggest a method that pass kernel representations with encoded feature
information from one layer to another, guiding kernel creation. Our kernel representation
is versatile, compatible with modern vision networks like CNNs, ViTs, MLP-based, and
pooling-based systems, whereas earlier methods were limited to traditional CNNs.

3 Kernel Representation for Dynamic Networks

3.1 Preliminary on Dynamic Convolution

For the widely used standard convolution, it can be formulated as Xi+1 = Conv(Xi;Wi)
where Xi and Xi+1 denote the input and output feature maps at the i-th layer respectively.
After training, the convolution kernel Wi is fixed during inference. Differently, dynamic
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convolution adaptively generates kernel Wi via a kernel generating function with current
input feature Xi as input for both training and inference phases, i.e. Wi = G(Xi;ααα i), where
ααα i denotes the parameters for generating kernel Wi. In practice, many methods [1, 12, 15]
implement G as the linear combination of a set of trainable kernels {Wi,k}n

k=1:

Wi = G(Xi;ααα i) = ααα i,1Wi,1 + ...+ααα i,nWi,n, (1)

where Wi,k ∈ Rcin×cout×H×W , αααk,i ∈ R, and ααα i = {αααk,i}n
k=1 denotes the predicted dynamic

coefficients used to generate different kernel Wi for different samples.
To predict ααα i, existing dynamic convolution methods firstly use global average pooling

to summarize current input feature Xi into a global representation vector hhhi:

hhhi = GlobalAveragePool(Xi) ∈ Rcin . (2)

Then they feed hhhi into a small network S to predict ααα i:

ααα i = S(hhhi) ∈ Rn. (3)

After training, the weights in the prediction network S are fixed, and current input feature Xi
is used to generate sample-specific kernel Wi through Eqn. (2), Eqn. (3) and finally Eqn. (1).

3.2 Kernel Representation Layer
For the aforementioned dynamic convolution methods, one can observe that the predicted
parameters ααα i solely depend on the input features Xi, but ignores what dynamic kernels were
applied to produce these features. This results in sub-optimal kernel generation that employs
a fixed kernel generation strategy on features obtained from dynamic kernels. This might
result in misalignment of kernels generated among different layers and limits the efficiency
of feature processing, hence withholding the potential of dynamic networks.

To alleviate these issues, we design Kernel Representation (KR) Layer for Dynamic Net-
works. As shown in Fig. 2, besides the input features, a kernel representation layer takes an
additional input kernel representation vector dddi as input, and also generates an output kernel
representation vector dddi+1 for the next layer. Here the kernel representation dddi mainly tells
the layer the nature of kernels used for the current input sample and thus allows the model to
know how the input feature map is generated, which will be introduced in detail below.
Representation Fusion (RF). In the RF module, we first uses global average pooling to
gather the global feature representation hhhi from the input feature map Xi via Eqn. (2). The RF
module aims to fuse the information from both the kernel representation dddi and the feature
representation hhhi. Therefore we first concatenate dddi and hhhi, and pass the features into a fusion
network F :

h̃hhi = F(cat[dddi,hhhi]) (4)

where F is implemented as one simple linear projection. After that, the Kernel Generator
receives h̃hhi to generate the coefficients ααα i which is further used to generate sample-specific
kernel Wi via Eqn. (1) for convolution. The Kernel Representation Generator takes both h̃hhi
and ααα i as input to produce the kernel representation dddi+1 for the next layer.
Kernel Generator (KG). This module takes the global representation h̃hhi as input, and pre-
dicts the coefficients ααα i via a simple MLP S:

ααα i = S(h̃hhi). (5)
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Figure 3: Overall architecture of dynamic neural network with proposed kernel repre-
sentation. Every kernel representation layer takes in the feature representation and kernel
representation from the previous layer as input, and outputs the processed features and a
kernel representation to be used by the next layer.

Then KG module uses the ααα i to generate the dynamic kernel Wi via Eqn. (2) for performing
convolution operation. Note that h̃hhi contains the information of both current feature map dddi
and also the kernel representation hhhi which contains information on which kernels are used
to generate current feature dddi. Therefore KG has the information of the feature values dddi and
also its generation process, thus making comprehensive decision to generate suitable kernels
from the current kernel set. See more discussion at the end of this section.
Kernel Representation Generator (KRG). To generate a kernel representation dddi+1 for the
next (i+ 1)-th layer, the KRG module first uses a linear layer to encode the predicted ααα i
into an embedding ᾱαα i, and then feeds ᾱαα i and h̃hhi into a linear layer K to generate the kernel
representation d̃ddi+1:

d̃ddi+1 = K(cat[h̃hhi, ᾱαα i]). (6)

To enhance the optimization, for each layer we concatenate the output feature kernel repre-
sentation d̃ddi+1 with the input kernel representation dddi defined as

dddi+1 = concatenate[dddi, d̃ddi+1], (7)

and then feed it into the next layer. This can be considered as a form of skip connections [8]
so that the gradient can directly flow to shallow layers of the network.
Discussion. Now we discuss the benefits of kernel representation dddi in the dynamic kernel
generation by discussing the its three input variables dddi−1, hhhi−1 and ᾱαα i−1 (see Eqn. (6) and
Eqn. (4) ) For ᾱαα i−1, it makes the i-th layer aware of the generation process of its input fea-
tures output by the (i−1)-th layer. hhhi−1 provides the global semantic feature representation
of input Xi−1. For dddi−1, it is the kernel representation which, through a recursive process,
contains both 1) the information on kernel generation process through all historical kernel
coefficients αααk (k = 0, · · · , i−2), and 2) the information on semantic features through glob-
ally pooled features hhhk (k = 0, · · · , i−2) of previous layers. With the comprehensive feature
and kernel representations, the current layer can make more global and suitable kernel gen-
eration decisions via the parameter prediction network S in the KG module.

3.3 Kernel Representation Enhanced Networks
Figure 3 shows the overall framework of a deep network with our kernel representation.

In this architecture, most parameterized layers are replaced with kernel representation layers
(Figure 2), except for the first stem or Patch Embedding. For most convolutions or linear
layers in the network, the kernel representation input for a layer comes from the previous
layer’s output. However, the network’s initial input kernel representation requires special
handling since no prior layer exists. We compute a vector that captures the image’s semantic
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information for this initial representation. To achieve this, we perform a 2-dimensional dis-
crete Fourier transform on the real RGB color values of the input image. Subsequently, the
magnitudes of 8×8 low-frequency components are extracted from all 3 channels, resulting
in a vector of length 192 that represents the frequency domain of the image. Finally, we em-
ploy a trainable linear projection layer to map the 192-dimensional frequency representation
to a 64-dimensional ddd0, which serves as the initial kernel representation to KR enhanced
dynamic networks.

In standard deep neural networks, global feature activation from global pooling or a class
token is passed to the classifier. But in networks using kernel representation, we combine
this activation with the kernel representation for the overall feature before classification.
This synchronizes optimization of the kernel representation with the backbone during train-
ing, producing more relevant kernels for specific image classification. Notably, networks
enhanced with kernel representation don’t need unique operators. Comprising only linear
layers, normalizations, and activations, the whole network, inclusive of its original backbone
and added kernel path, is trained end-to-end.

While previous dynamic kernel methods primarily addressed the micro-level, crafting
sample-adaptive kernels for each layer, our method adds a macro-level perspective, optimiz-
ing sample-adaptive feature processing. Rather than just using input features for kernel cre-
ation, we employ kernel representations that inform about prior layer kernel processes. This
continuity enhances the network’s kernel suitability during forward passes. Furthermore,
during training, kernel representation updates easily via backward propagation, enriching
class-specific information and refining kernel generation. Fig. 1b and 1c visualizations high-
light improved feature clustering within the same class using kernel representation, show-
casing its ability to encode class semantics effectively. This differs from prior methods that
rely solely on current input features for kernel generation.

As the kernel representation are only 1-dimensional vectors, there are few additional
parameters and little computational cost incurred by employing them compared to the main
dynamic convolutional layers in the backbone.

4 Experiments

4.1 Implementation and Settings

The proposed kernel representation is a general tool that can be used with most modern
deep neural networks. In this work, we integrate kernel representation with representative
architectures, including MetaFormer [29] architectures (ViTs [3] and PoolFormer [29]) and
CNNs (ResNets [4] and MobileNets [17]). For all networks, the dimension for the first kernel
representation ddd0 projected from the low frequency components of the input image is 64. For
ViTs, we consider each residual block as one parameterized unit, and increase the number
of dimensions of the kernel representation by 32 for each block, i.e. dim(d̃ddi+1) = 32. For
ResNet-18, we set dim(d̃ddi+1) = 32 for each convolution layers with kernel representation.
For ResNet-50 and MobileNets, as both networks are relatively deep, we set the dim(d̃ddi+1) to
a smaller value of 16. For PoolFormer, we increase the number of dimensions of the kernel
representation by 32 for each MLP and Patch Embedding block.

For our experiments with Vision Transformers (ViTs), drop-path is not employed during
training for our dynamic models, as our proposed kernel representation relies on the feature
dependencies between successive layers, which could be disrupted by the use of drop-path.
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Models FLOPs Top-1 Acc (%)

ViT-Nano 0.61G 67.5
+ODConv (4×) [12] 0.62G 71.8 +4.3

+KR (ours) (1×) 0.61G 71.0 +3.5

+KR (ours) (4×) 0.62G 73.8 +6.3

ViT-Tiny 1.26G 72.2
+ODConv (4×) [12] 1.28G 75.5 +3.3

+KR (ours) (1×) 1.27G 75.8 +3.6

+KR (ours) (4×) 1.29G 76.6 +4.4

ViT-Small 4.61G 79.8
+ODConv (4×) [12] 4.70G 80.4 +0.6

+KR (ours) (1×) 4.64G 80.4 +0.6

+KR (ours) (4×) 4.71G 80.6 +0.8

Table 1: Performances of ViTs on ImageNet

Models FLOPs CIFAR-10 CIFAR-100
Acc (%) Acc (%)

ViT-Nano 168M 80.0 58.6
+KR (ours) (1×) 176M 87.4 +7.4 64.2 +5.6

+KR (ours) (4×) 182M 88.4 +8.4 65.2 +6.6

ViT-Tiny 367M 82.0 60.5
+KR (ours) (1×) 383M 89.0 +7.0 66.0 +5.5

+KR (ours) (4×) 396M 90.3 +8.3 68.4 +7.9

Table 2: Performances of ViTs on CIFAR
Models FLOPs Top-1 Acc (%)

PoolFormer-S12 1.82G 77.2
+KR (ours) (1×) 1.84G 78.2 +1.0

+KR (ours) (4×) 1.88G 79.0 +1.8

Table 3: Performance on PoolFormer
We train the models on ImageNet-1k [2] or CIFAR [10] training set and evaluate on

their corresponding validation set. For each backbone model, we use the same training
settings as the baseline vanilla model with fixed kernels. For fair comparison, the number of
epochs, batch-size, and data augmentations are the same for all model variants within a set of
experiments. Specifically, for our experiments on the ImageNet-1k dataset, all models were
trained for 300 epochs using the training recipes proposed by DeiT [23]. For the experiments
conducted using the CIFAR-10 and CIFAR-100 datasets, we train all models for 200 epochs
with a batch size of 256. We applied standard data augmentation techniques for CIFAR
datasets, including a 4-pixel padding on each side followed by a random crop of a 32x32
region. We also included a random horizontal flip with a probability of 50%, and the images
were normalized before feeding them into the network. We used the Adam optimizer with
a weight decay of 0.00005. The learning rate was warmed up to 0.001 for the first 5 epochs
and decayed using a cosine annealing schedule for the remainder of the training.

4.2 Results on MetaFormer Architectures

Results on ViTs. We first implement the proposed kernel representation on Vision Trans-
formers. There are two linear layers in each residual block within the Transformer blocks,
which are equivalent to 1×1 convolutions. We add kernel representation to each of the two
linear layers to generate sample dependent kernels. Note that the actual self-attention cal-
culation softmax(QKT )V remains unchanged, as there are no parameters involved in these
matrix multiplications. We evaluate with ViT-Tiny and ViT-Small with 192 and 384 feature
channels respectively. The results are shown in Table 1. When we employ kernel representa-
tion for the ViT-Tiny model, the performance can be improved by 4.4% to 76.6%. The results
show that our kernel representation greatly enhances the feature representation power. We
perform another set of experiments with models of a smaller size to further prove its merit.
We reduce the number of channels of ViT-Tiny from 192 to 128 and name it "ViT-Nano".
Results in in Table 1 show that kernel representation guided ViT-Nano can achieve an accu-
racy of 73.8%, which is higher than 72.2% by the vanilla ViT-Tiny, but with less than half
the computational cost of vanilla ViT-Tiny. These results reveal the favorable improvement
in efficiency by using our kernel representation. Moreover, we reproduced state-of-the-art
dynamic kernel method ODConv on ViTs by replacing the linear layers to 1×1 dynamic
ODConvs. Our proposed KR outperform ODConv consistently on different scales by 0.2%
to 2.0%, further demonstrating the effectiveness of KR over conventional dynamic kernel
methods.
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Models FLOPs Acc (%)

ResNet-18 slim 1.35G 66.3
ResNet-18 slim +ODConv (1×) 1.37G 69.6 +3.3

ResNet-18 slim +ODConv (4×) 1.44G 71.6 +5.3

ResNet-18 slim +KR (1×) 1.38G 70.7 +4.4

ResNet-18 slim +KR (4×) 1.45G 72.6 +6.3

ResNet-18 1.81G 70.3
+CondConv (8×) [28] 1.89G 72.0 +1.7

+DyConv (4×) [1] 1.86G 72.8 +2.5

+WeightNet [15] 1.83G 71.6 +1.3

+WE [16] 1.82G 71.0 +0.7

+DCD [13] 1.84G 72.3 +2.0

+ODConv (1×) [12] 1.84G 73.1 +2.8

+ODConv (4×) [12] 1.92G 73.9 +3.6

+KR (ours) (1×) 1.85G 73.3 +3.0

+KR (ours) (4×) 1.93G 74.2 +3.9

ResNet-50 3.86G 76.2
+CondConv (8×) [28] 3.98G 76.7 +0.5

+DyConv (4×) [1] 3.97G 76.8 +0.6

+WeightNet [15] 3.89G 77.5 +1.5

+WE [16] 3.86G 77.1 +0.9

+DCD [13] 3.94G 76.9 +0.7

+ODConv (1×) [12] 3.92G 78.0 +1.8

+ODConv (4×) [12] 4.08G 78.5 +2.3

+KR (ours) (1×) 3.93G 78.3 +2.1

+KR (ours) (4×) 4.09G 78.7 +2.5

Table 4: Performances of ResNets

Models FLOPs Acc (%)

MobileNetV2 (1.0×) 301M 71.7
+CondConv(8×) [28] 318M 74.1 +2.4

+DyConv(4×) [1] 317M 74.9 +3.2

+DCD [13] 318M 74.2 +2.5

+ODConv(1×) [12] 311M 74.8 +3.1

+ODConv(4×) [12] 327M 75.4 +3.7

+KR (ours) (1×) 315M 74.9 +3.2

+KR (ours) (4×) 331M 75.5 +3.8

MobileNetV2 (0.75×) 209M 69.2
+CondConv(8×) [28] 239M 71.8 +2.6

+DyConv(4×) [1] 220M 72.8 +3.6

+DCD [13] 223M 71.9 +2.7

+ODConv(1×) [12] 217M 72.4 +3.2

+ODConv(4×) [12] 226M 73.8 +4.6

+KR (ours) (1×) 220M 72.8 +3.6

+KR (ours) (4×) 230M 74.0 +4.8

MobileNetV2 (0.5×) 97M 64.3
+CondConv(8×) [28] 110M 67.2 +2.9

+DyConv(4×) [1] 103M 69.1 +4.8

+DCD [13] 106M 69.3 +5.0

+ODConv(1×) [12] 102M 68.3 +4.0

+ODConv(4×) [12] 106M 70.0 +5.7

+KR (ours) (1×) 105M 68.5 +4.2

+KR (ours) (4×) 109M 70.3 +6.0

Table 5: Performances of MobileNetV2
ViT on CIFAR datasets. We further test the proposed KR’s efficacy on the smaller CIFAR
datasets [10], training all models for 200 epochs using consistent hyper-parameters. We
set patch embedding dimensions for all models at 4×4. Table 2 shows that KR-equipped
models consistently surpass the baselines. Notably, the KR-enhanced ViT-Nano model, with
182 MFLOPs, achieves 88.4% and 65.2% on CIFAR-10 and CIFAR-100, surpassing the
standard ViT-Tiny model, which costs 2× the computation at 367 MFLOPs.
Results on PoolFormer. To further validate the effectiveness of kernel representation, we
conducted experiments on PoolFormer, a pooling-based network without spatial convolu-
tions or attention. All models are trained for 300 epochs with the same training settings as
PoolFormer-S12. The results are shown in Table 3. The top-1 accuracy can be increased
to 78.2% and 79.0% by using 1 and 4 times the number of kernel parameters, respectively,
demonstrating the effectiveness of our kernel representation.

4.3 Results on CNN Architectures
Results on ResNets. Table 4 shows the results of different types of convolutions with the
most popular CNN backbones ResNet18 and ResNet50. All models are trained for 100
epochs without advanced data augmentations nor Mixup [30]. By replacing standard con-
volutions with the various previous dynamic convolutions, the accuracy can be improved by
1.7% to 3.6% and 0.5% to 2.3% respectively on ResNet-18 and ResNet-50. In comparison,
by integrating kernel representation into ResNets, the top-1 accuracy is boosted by 3.9% to
74.2% on ResNet-18, and by 2.5% to 78.7% on ResNet-50. The results show that our KR
can bring performance improvements to ResNets backbones. Moreover, by encoding feature
semantics, KR achieves comparable results to standard CNN networks but with fewer chan-
nels. This is verified with ResNet-18 slim, using channel widths of 64, 128, 192, and 256
across the four stages. Table 4 indicates KR’s significant accuracy boost on ResNet-18 slim,
even when compared to ODConv. Moreover, a KR-augmented ResNet-18 slim, with 20%
less GFLOPs, performs 2.3% better than a vallina ResNet-18.
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Method Model Top-1
Acc(%)

kernel representation networks ViT-Nano 73.8
ViT-Tiny 76.6

Dynamic kernels ViT-Nano 71.1 -2.7

without kernel representation ViT-Tiny 75.1 -1.5

kernel representation ViT-Nano 72.1 -1.7

without low frequency embed ViT-Tiny 75.6 -1.0

kernel representation ViT-Nano 72.8 -1.0

without BatchNorm ViT-Tiny 76.0 -0.6

Standard Linear Baseline ViT-Nano 67.5 -6.3

ViT-Tiny 72.2 -4.4

Table 6: Ablation Results

Hyper-parameters setting FLOPs Top-1
Acc (%)

Default 622M 73.8

Parameter multiplier 4 ⇒ 1 612M 71.0
Parameter multiplier 4 ⇒ 2 615M 71.8
Parameter multiplier 4 ⇒ 8 635M 73.8

Reduction ratio 8 ⇒ 4 627M 73.6
Reduction ratio 8 ⇒ 16 619M 72.6

Dimensions of KR 64 ⇒ 32 619M 72.2
Dimensions of KR 64 ⇒ 128 628M 73.7

Table 7: Performance for various hyper-
parameters settings of KR ViT-Nano.

Results on MobileNets. Table 5 shows the results evaluated on the ImageNet validation set
with MobileNetV2 backbones using different width multipliers (1.0, 0.75 and 0.5) respec-
tively. All models are trained for 150 epochs following the training settings of ODConv [12]
for fair comparison. Many existing dynamic convolution methods focus on improving model
capacity of the light-weight mobile-sized models, with noticeable improvements of 3% to
5% on these networks. By utilizing kernel representation guided kernel generation, we are
able to obtain even higher accuracy on all scales of MobileNetV2. The kernel representation
guided kernel generation provides greater representation capability for the models, and can
offer accuracy gains of 6.0%, 4.8% and 3.8% on MobileNetV2 with width multipliers of 0.5,
0.75, and 1.0 respectively. The results on ResNets and MobileNets further demonstrate that
our kernel representation can be integrated easily with different types of backbone structures
to boost their representation power with little extra computation cost.

4.4 Ablation Studies
We conducted ablation studies for various design choices. Models were trained for 300
epochs on ImageNet-1k using the DeiT [23] setting. Ablations were done with ViT-Nano
and ViT-Tiny backbones, setting the kernel parameter multiplier to 4 by default.
Kernel representation. Our structure differs from prior dynamic convolutions due to the
added guidance from kernel representation during kernel generation. We first assess the per-
formance impact of the proposed kernel representation. Table 6 presents results of ViT net-
works using dynamic kernels with and without kernel representation. Without KR, accuracy
decreases by 2.7% and 1.5% for ViT-Nano and ViT-Tiny models, respectively, highlighting
the benefits of incorporating kernel representation.
Low Frequency Components Embedding. As mentioned in previously, this is one key
design in kernel representation enhanced dynamic networks. A projection from the low fre-
quency components of the input image can encode the semantic information into the first ker-
nel representation ddd0 effectively. A baseline setting for ddd0 is a randomly initialized learnable
vector, which completes the formulation of Eqn. (4) but does not provide any information
about the input samples. The performance of kernel representation networks without low
frequency inputs is shown in Table 6. The drops in accuracy are 1.7% and 1.0% respectively
for ViT-Nano and Vit-Tiny, which are non-trivial.
Batch Normalization on kernel representation. We use BatchNorm [9] on each kernel
representation output d̃ddi to enhance training optimization. Table 6 indicates a 1.0% and 0.6%
accuracy drop without these BatchNorms, emphasizing their role in stabilizing training.
Hyper-parameters. Here we study the effects of several hyper-parameters in the kernel rep-
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resentation networks, including 1) parameter multiplier: the number of multiples of kernel
parameters [1, 12, 15]; 2) reduction ratio: the ratio between the dimensions of input to output
channels for the linear layer before kernel generator; and 3) dimension of KR: the dimen-
sions of kernel representation in the network, with default being 64 for every Transformer
block. The results are shown in Table 7. The default setting with a parameter multiplier of
4, a reduction ratio of 8 and an KR dimension of 64 performs best among various settings.

4.5 Visualizations
In addition to the T-SNE [25] visualization of the features as shown in Fig 1b and 1c, we
further verify the effectiveness of kernel representation (KR) via visualizing the dynamic
weights generated from trained networks. For both the ViT-Nano models trained with the
proposed KR and without KR, we collect the dynamic weights (kernels) generated for 1000
different samples from 20 classes, from the 6th, 8th, 10th, and 12th MLP-Blocks of the
trained dynamic ViT-Nano networks. We present the T-SNE visualization of our weight
distribution in Figure 4. It can be observed that, at each stage of the network, the weights
for different samples of the network trained with the proposed kernel representation (in the
bottom row) exhibit better clustering for samples from the same class and greater separation
for samples from different classes. Moreover, the distributions of the weights follow a similar
pattern as the distributions of feature representations presented in Figure 1, indicating that the
class-specific information provided by the kernel representation can be utilized effectively
during the dynamic kernel generation process.

40 20 0 20 40

40

30

20

10

0

10

20

30

40

(a) 6th Block w/o KR
40 20 0 20 40 60

40

20

0

20

40

(b) 8th Block w/o KR
40 20 0 20 40 60

40

20

0

20

40

(c) 10th Block w/o KR
40 20 0 20 40

40

20

0

20

40

(d) 12th Block w/o KR

40 20 0 20 40

40

20

0

20

40

(e) 6th Block with KR
40 20 0 20 40

40

20

0

20

40

60

(f) 8th Block with KR
40 20 0 20 40 60

40

20

0

20

40

60

(g) 10th Block with KR
40 20 0 20 40

40

20

0

20

40

60

(h) 12th Block with KR
Figure 4: T-SNE Visualization of distributions of dynamic weight generated.

5 Conclusion
In this paper, we present a unique approach to sample-adaptive dynamic networks: kernel
representation. This method retains semantic information alongside the traditional feature-
processing backbone, enhancing kernel generation at each layer with added insight from KR.
Consequently, our approach generates kernels that are better suited for extracting features for
different samples. Through comprehensive experiments on multiple backbones, our results
confirm the considerable performance gains achieved by incorporating kernel representations
into dynamic networks, with little additional computation cost.
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