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Abstract

Long-tailed problems in healthcare emerge from data imbalance due to variability in
the prevalence and representation of different medical conditions, warranting the require-
ment of precise and dependable classification methods. Traditional loss functions such
as cross-entropy and binary cross-entropy are often inadequate due to their inability to
address the imbalances between the classes with high representation and the classes with
low representation found in medical image datasets. We introduce a novel polynomial
loss function based on Padé approximation, designed specifically to overcome the chal-
lenges associated with long-tailed classification. This approach incorporates asymmetric
sampling techniques to better classify under-represented classes. We conducted exten-
sive evaluations on three publicly available medical datasets and a proprietary medical
dataset. Our implementation of the proposed loss function is open-sourced in the public
repository: https://github.com/ipankhi/ALPA.

1 Introduction
Medical image classification is a crucial component in the development of effective diag-
nostic as well as prognostic tools [28]. The utility of these tools often relies on the ability
to manage and interpret large volumes of medical imaging data. However, a pervasive chal-
lenge encountered in these datasets is the prevalence of a long-tailed distribution—a scenario
where the majority of data samples belong to a few dominant classes, while the remaining
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classes have significantly fewer samples [23]. This imbalance poses significant challenges
in training accurate classifiers, as conventional machine learning algorithms often struggle
to learn from classes with limited samples [16]. The existence of long tails in medical image
datasets can be attributed to several factors, such as the rarity of certain medical conditions
or diseases leading to a limited number of samples available for those classes [27]. As a
result, these classes have few positive examples, making them challenging to detect and
classify accurately. Furthermore, data collection in medical imaging is often biased towards
common and easily accessible conditions, resulting in an uneven representation of different
classes [9], [12]. The challenges posed by long-tailed class distributions in medical image
classification have thus prompted researchers to explore various solutions.

In their survey "Deep Long-Tailed Learning," Zhang et al grouped existing solutions into
three main categories: class re-balancing, information augmentation, and module improve-
ment [38]. These were further classified into nine sub-categories; Re-sampling methods,
such as oversampling and undersampling, involve altering the class distribution in the train-
ing set [6], [21]. Class-sensitive learning methods, like re-weighting [19], [8] ,[34] and re-
margining [5] aim to re-balance training loss values for different classes promoting equitable
learning, while logit adjustment techniques [25] aim to re-calibrate the output probabilities
of the classifier to account for the imbalanced class distribution. Transfer learning aims to
enhance model training on a target domain by transferring knowledge from a source domain
[10] and data augmentation techniques diversify datasets by either applying transformations
directly to existing data or by utilizing generative AI methods, such as Generative Adversar-
ial Networks (GANs) and Diffusion models, to create new samples [30], [33], [32]. Rep-
resentation learning methods aim to learn more discriminative feature representations that
can better separate different classes [15], [37], while classifier design involves optimizing
the architecture and parameters of the classifier to improve its performance on long-tailed
datasets by transferring geometric structures from head classes to tail classes [20]. Decou-
pled training techniques decouple the training of the classifier into two stages: a representa-
tion learning stage and a classifier learning stage [14]. Finally, ensemble learning methods
combine multiple classifiers, each trained on different subsets of the data or with different
techniques, to improve classification performance [40], [18].

Loss functions play a crucial role in guiding model training. Class-sensitive loss func-
tions are designed to mitigate the adverse effects of class imbalance by adjusting the contri-
bution of each class to the overall loss calculation. These loss functions aim to ensure that
the model does not disproportionately prioritize majority classes over minority ones dur-
ing training. By doing so, they help alleviate the challenges associated with skewed class
distributions and improve the model’s ability to generalize across all classes. Focal loss,
introduced by [19], is a classic strategy to mitigate long-tailedness in classification tasks
by dynamically adjusting the weighting of different examples during training to focus more
on hard-to-classify samples. Similarly, class-balanced loss [8] assigns weights to different
classes inversely proportional to their frequencies. Asymmetric loss [2] and asymmetric
polynomial loss [11] are variants of loss functions designed to penalize misclassifications of
minority classes more heavily than majority classes.

2 Our contribution
Polynomial expansions allow for the modeling of higher-order interactions between variables
that linear models typically miss, thus providing a more nuanced and detailed depiction of
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data behaviors. Additionally, this method can be particularly useful in healthcare image
analysis domains where capturing non-linear patterns is essential for predicting outcomes
with high accuracy. By incorporating polynomial terms, models can approximate a wider
range of functions, thereby adapting more effectively to the underlying complexities of the
dataset [17].

The Padé approximation [35] is a mathematical technique that approximates a function
through a ratio of two polynomials rather than relying solely on polynomial expansions. In
earlier works, learnable activation functions based on the Padé approximation have shown
promising performance [26], [3]. This method is particularly effective in modeling functions
with singularities and provides a more accurate approximation over certain intervals. By
applying the Padé approximation to the BCE loss function, we aim to achieve a more precise
representation of the loss landscape, enabling our model to adjust more effectively to the
true distribution of training data. Asymmetric focusing addresses the imbalance between
the positive and negative classes by applying different weights to the loss contributions of
each class. This technique is crucial in long-tail scenarios, where the minority class requires
greater emphasis to ensure sufficient model sensitivity towards less frequent conditions.

In our research,

• We introduce a novel approach to address the challenge of long-tailed medical image clas-
sification by proposing a Padé expansion-based polynomial loss function.

• Furthermore, by implementing an asymmetric focus, this loss function demonstrates en-
hanced classification performance for under-represented classes compared with other loss
function-driven techniques in long-tailed problems.

• We rigorously tested the efficacy of our method (Asymmetric Loss with Padé Approximation
[ALPA]) across three publicly available medical image datasets in addition to a proprietary
medical image dataset.

3 Related Work
The development of loss functions tailored for imbalanced datasets has been a focal point of
research. The standard cross entropy loss is a commonly used loss function for classification
tasks, defined as: {

L+
CE =−∑

K
i=1 yi log(ŷi),

L−
CE =−∑

K
i=1(1− yi) log(1− ŷi),

(1)

where K is the number of classes, and yi and ŷi represent the ground-truth and estimated
probabilities for class i respectively. However, when dealing with imbalanced datasets, the
cross entropy loss (Equation 1) treats all class samples equally and does not consider the
imbalanced distribution. Thus, it tends to prioritize majority classes, leading to suboptimal
performance on minority classes. Lin et al [19] proposed Focal Loss (Equation 2) as a mod-
ification, which dynamically adjusts the loss weights based on the predicted probabilities.
This enables Focal Loss to down-weigh the loss assigned to well-classified examples and
focus more on difficult-to-classify instances. It is formulated as follows:{

L+
Focal = α+(1− ŷ)γ log(ŷ)

L−
Focal = α−ŷγ log(1− ŷ)

(2)
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where α+ and α− are the balancing factors for positive and negative losses, respec-
tively, and γ is the focusing parameter. Notably, setting γ = 0 yields the binary cross-entropy
loss. However, Focal Loss uses the same focusing parameter γ for both positive and nega-
tive losses. This can lead to suboptimal performance, especially in scenarios where the tail
classes require different treatment compared to the head classes.

The Asymmetric Loss [2] introduces an asymmetric weighting scheme to alleviate the
weaknesses of the Focal Loss. Equation 3 assigns different focusing parameters for posi-
tive and negative losses, allowing for separate optimization of the training of positive and
negative samples. It is defined as:{

L+
ASL = (1− ŷ)γ+ log(ŷ)

L−
ASL = ŷγ− log(1− ŷ)

(3)

where γ+ and γ− are the focusing parameters for positive and negative losses respectively.
The Class-Balanced (CB) Loss [8] is another technique aimed at mitigating the chal-

lenges posed by class imbalance in training datasets and is formulated as follows:

LCB =− 1
K

K

∑
k=1

1−β γ

1−β
· yγ

k · log(ŷk) (4)

where γ is the focusing parameter and β is a hyperparameter controlling the balance be-
tween the effective number of samples for each class and the average effective number of
samples. Unlike traditional loss functions, CB loss (Equation 4) introduces a mechanism
to dynamically adjust the weights of different classes during the training process. This ad-
justment is based on the effective number of samples for each class, thereby ensuring that
minority classes receive higher weights compared to majority classes. In [13] Jamal et al
shows that class-balanced loss can underperform due to the domain gap between head and
tail classes. Similarly, the Label-Distribution-Aware Margin (LDAM) Loss [5] is a loss
function designed to enhance the discriminative power of deep neural networks by explic-
itly maximizing the margins between different classes. Unlike traditional loss functions like
cross-entropy, LDAM loss focuses on optimizing the margins between classes in the feature
space, thereby promoting better class separation and improved generalization performance.
However, negative eigenvalues can persist in the LDAM loss landscape for tail classes due
to insufficient data representation, leading to directions of negative curvature [31], making it
inefficient for achieving effective generalization on tail classes.

4 METHOD

4.1 Padé approximants for BCE loss
The BCE loss can be decomposed into C-independent binary classification subproblems:

LBCE =
1
C

C

∑
i=0

(
yiL++(1− yi)L−) , yi ∈ {1,0} (5)

where L+ =− log(ŷi) is for the positive class, and L− =− log(1− ŷi) is for the negative class.
Here, ŷi is the prediction probability after the sigmoid function. We first define LBCE in Padé
approximant form. For positive classes where yi = 1, we set the polynomial expansion point
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to be 1; for negative classes where yi = 0, we set the expansion point to 0. Thus, Padé
approximants for the positive and negative classes for a single sample are:

L+
Padé =

a0 +∑
M
m=1 amŷm

1+∑
N
n=1 bnŷn

,

L−
Padé =

c0 +∑
M
m=1 cm(1− ŷ)m

1+∑
N
n=1 dn(1− ŷ)n

(6)

where ŷ represents the prediction probability of a single sample, while M and N represent
the orders of the numerator and denominator polynomials, respectively, and a0, am, bn, c0,
cm, and dn are coefficients of Padé approximants.

4.2 Derivation of the coefficients
The conventional Padé approximation of order m/n tends to reproduce the Taylor expansion
of order [35] m+n, and the coefficients are found by setting

P(x)
Q(x)

= A(x) (7)

where P(x) is a numerator polynomial of order m, Q(x) is the denominator polynomial of
order n of Padé approximant , and A(x) is the Taylor expansion of order m+n.
In terms of the Taylor Series Expansion, L+ and L− are:{

L+
Taylor = ∑

∞
k=1(−1)k+1 (ŷi−1)k

k

L−
Taylor =−∑

∞
k=1

ŷi
k

k

(8)

In line with previous research that highlights the effectiveness of the first-degree polyno-
mial [17], we adopt the first-order Padé approximation for our loss function. This approach
sets both the numerator’s and the denominator’s orders to one, and for deriving the coeffi-
cients, we equate them with the respective Taylor series expansion of the second order.
The first order of 6 would be: {

L+
Padé ≈

a0+a1 ŷi
1+b1 ŷi

L−
Padé ≈

c0+c1(1−ŷi)
1+d1(1−ŷi)

(9)

Expanding 8 up to second order:{
L+

Taylor ≈ (ŷi −1)− 1
2 (ŷi −1)2

L−
Taylor ≈−ŷi − 1

2 ŷi
2 (10)

By equating 9 and 10, we obtain the values of the coefficients a0 =−1.5, a1 = 1.5, and
b1 = 0 , and the coefficients c0 =−1, c1 = 1, and d1 = 0.

4.3 Addition of asymmetric focusing mechanism and balancing factors
Allowing separate optimization of the positive and negative samples, we add balancing fac-
tors and asymmetric focusing mechanism from 3. Our proposed asymmetric loss based on
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Padé approximation becomes,

LALPA =
N

∑
i=1

[
αyi(1− ŷi)

γposL+
Padé +β (1− yi)ŷi

γnegL−
Padé

]
·Wi (11)

where N is the number of labels, ŷi is the predicted probability and yi is the binary target label
for the i-th sample, α and β are balancing parameters, γpos and γneg are focusing parameters,
L+

Padé and L−
Padé are the Padé Approximation forms for positive and negative predictions,

respectively. Wi is the weight for the i-th sample, calculated as (1− pti)γ , where pti is the
predicted probability adjusted for the target label such that pti = yiŷi +(1− yi)(1− ŷi), and
γ is the summation of focusing parameters, with γpos applied for positive targets and γneg for
negative targets.

We studied the effects of hyperparameters α , β , γpos and γneg on the loss function and
evaluated the loss function using the best-performing combination of values on the datasets
used in this study.

4.4 Gradient Analysis

Gradients play a pivotal role in the training process, guiding the adjustments of network
weights with respect to the input logit z. In this section, following the work of [2], we
provide a comprehensive analysis of the loss gradients of ALPA compared to established
loss functions such as Cross Entropy, Focal Loss, and Asymmetric Loss.
For ALPA, we have L−

ALPA = (ŷi)
γneg+1, thus, the negative gradient equation for the ALPA

function is given by:

dL−
ALPA
dz

=
dL−

ALPA
dŷi

· dŷi

dz
= (ŷi)

γneg+1 · (1− ŷi) · (γneg +1)

where ŷi =
1

1+e−z represents the predicted probability for the input logit z and γneg is the
focusing parameter for negative targets.

The results of the gradient analysis are shown in Figure 1.

Figure 1: Comparison of loss gradients for ALPA (γneg = 4), ASL (m = 0.01, γneg = 0.01),
CE (m = 0, γneg = 0), and Focal Loss (γ = 0.5)

We observe that the gradient for ALPA increases moderately as the probability ŷi ap-
proaches 1. This suggests that our proposed loss function provides a consistent learning
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Table 1: Details of long-tailed medical datasets.
Dataset Classes Samples Imbalance Ratio

APTOS2019 5 3,662 10
DermaMNIST 7 10,015 58
BoneMarrow 17 147,904 621.79

Oraiclebio 52 3643 164

signal across the probability spectrum. It neither penalizes very harshly for misclassifica-
tions (when ŷi is low) nor relaxes too much when the classification is correct (when ŷi) is
high). Thus, ALPA appears to be a good choice for consistent learning across all probabil-
ities. By focusing on harder examples and not over-penalizing the correctly classified ones,
it achieves better generalization compared to other losses.

5 Experimental Setup

5.1 Datasets
The APTOS 2019 BD dataset [4] includes data from individuals diagnosed with varying
levels of Diabetic Retinopathy (DR), categorized into five classes: No DR, Mild DR, Moder-
ate DR, Severe DR, and Proliferative DR. The DermMNIST dataset [36] comprises 450x600
pixel images of various skin diseases classified into seven categories: Melanoma, Melanocytic
Nevus, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, Dermatofibroma, and
Vascular Lesion. The BoneMarrow dataset [24] contains expertly annotated cells from bone
marrow smears of 945 patients, classified into 17 types including Basophil (BAS), Blast
(BLA), Erythroblast (EBO), and more. The Oraiclebio dataset, which remains proprietary,
includes 3,643 images of oral regions featuring 52 classes of precancerous and cancerous
lesions.

Details of these datasets are summarized in Table 1, where the imbalance ratio, defined
as Nmax/Nmin (with N representing the sample count per class), illustrates the significance of
the long-tailed distribution. For experimentation, each dataset was split 80-20 into training
and testing sets, and a 5-fold cross-validation strategy was used during training to enhance
model reliability.

5.2 Implementation
We use ConvNeXT-B [22] as the backbone for the proposed loss. We resize the input images
as 256 x 256 and exploit the data augmentation schemes following the previous work [1, 7].
We train our networks using the Adam optimizer with 0.9 momentum and 0.001 weight
decay. The batch size is 128, and the initial learning rate is set to 1e−4. Our networks
are trained on PyTorch version 2.2.1 with RTX A6000 GPUs. We use accuracy, balanced
accuracy and F1-score as evaluation metrics for this study.

6 Results
In this section, we present experimental results validating the effectiveness of the proposed
ALPA function. We first analyze the impact of hyperparameters on the loss function and

Citation
Citation
{Bodapati, Naralasetti, Shareef, Hakak, Bilal, Maddikunta, and Jo} 2020

Citation
Citation
{Yang, Shi, Wei, Liu, Zhao, Ke, Pfister, and Ni} 2023

Citation
Citation
{Matek, Krappe, M{ü}nzenmayer, Haferlach, and Marr} 2021

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

Citation
Citation
{Azizi, Mustafa, Ryan, Beaver, Freyberg, Deaton, Loh, Karthikesalingam, Kornblith, Chen, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Chen, Wei, Wang, and Guo} 2019



8 KASHYAP et al.: TAMING THE TAIL

then compare ALPA with state-of-the-art loss functions like Asymmetric Loss, Focal Loss
and Cross Entropy.

6.1 Effect of the hyperparameters
To evaluate the effect of hyperparameters, we experimented as follows:

• Loss v1: Hyperparameters were randomly set as α = 1, β = 1, γpos = 0, and γneg = 4.
This is indicated as Loss v1 in Table 2.

• Loss v2 (LALPA): Using random search, hyperparameters were optimized within the
ranges α and β (0.5 to 2), and γpos and γneg (0 to 5). Final values were α = 0.875,
β = 1.625, γpos = 0, and γneg = 4. This is indicated as Loss v2 in Table 2.

• Loss v3: Incorporating Hill Loss [39] following [29], we added λ − ŷi to L− (λ = 1.5),
optimizing via random search to α = 1.25, β = 2, γpos = 3, and γneg = 2. This is
indicated as Loss v3 in Table 2.

Results on the APTOS2019 dataset for these settings are shown in Table 2. We focused
on detecting crucial cases like Proliferative DR and examined the performance of underrep-
resented classes to proceed with Loss v2. From here on, Loss v2 is referred to as LALPA.

Table 2: Performance metrics for different versions of Loss.
Classes Number of Loss v1 Loss v2 Loss v3

training samples Acc F1-score Acc F1-score Acc F1-score
No DR 1454 98.86 0.98 98.01 0.98 98.86 0.98
Mild 786 64.71 0.62 58.82 0.59 26.47 0.37
Moderate 302 88.26 0.76 86.38 0.79 92.96 0.79
Severe 230 2.78 0.5 33.33 0.44 36.11 0.39
Proliferative DR 157 23.08 0.36 47.69 0.58 30.77 0.45

6.2 Comparison with existing methods
We compare our proposed loss function with state-of-the-art methods such as ASL, Focal
Loss, LDAM, and CE on the datasets listed in Section 5.1. Results on the publicly available
datasets are presented in Tables 3, 4, and 5, while the results for LDAM loss functions can
be found in the supplementary materials. ALPA consistently excels in classes with fewer
samples while maintaining competitive accuracy in classes with higher representation. In
terms of balanced accuracy, ALPA surpasses all other loss functions across the three public
datasets.

Table 3: Comparison of different loss functions on the APTOS2019 dataset.
Classes Number of ALPA ASL CE FOCAL

training samples Acc f1-score Acc f1-score Acc f1-score Acc f1-score

No DR 1454 98.01 0.98 98.58 0.98 98.86 0.97 99.43 0.94
Mild 786 58.82 0.59 41.18 0.50 16.18 0.27 10.29 0.16
Moderate 302 86.38 0.79 90.61 0.77 97.18 0.76 88.73 0.75
Severe 230 33.33 0.44 11.11 0.17 8.33 0.14 8.33 0.15
Proliferative DR 157 47.69 0.58 43.08 0.57 16.92 0.28 30.77 0.41

Balanced Accuracy 0.65 0.57 0.47 0.48
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Table 4: Comparison of different loss functions on the DermaMNIST dataset.
Classes Number of ALPA ASL CE FOCAL

training samples Acc f1-score Acc f1-score Acc f1-score Acc f1-score

akiec 256 4.23 0.08 16.9 0.29 0.00 0.00 1.41 0.03
bcc 406 19.44 0.31 26.85 0.37 5.56 0.10 26.85 0.38
bkl 882 35.94 0.45 18.43 0.28 17.97 0.26 1.84 0.04
df 88 33.33 0.39 22.22 0.35 3.70 0.07 7.41 0.10
mel 885 10.09 0.18 8.33 0.15 0.44 0.01 1.32 0.03
nv 5375 98.50 0.86 96.62 0.84 99.70 0.82 98.27 0.82
vasc 120 72.73 0.35 54.55 0.19 36.36 0.37 81.82 0.42

Balanced Accuracy 0.39 0.35 0.23 0.31

Table 5: Comparison of different loss functions on the Bone Marrow dataset.
Classes Number of ALPA ASL CE FOCAL

training samples Acc f1-score Acc f1-score Acc f1-score Acc f1-score

BAS 348 54.84 0.68 55.91 0.68 46.24 0.61 51.61 0.66
BLA 9569 85.94 0.87 87.06 0.88 89.93 0.88 87.52 0.88
EBO 21883 95.94 0.96 96.23 0.96 96.21 0.96 96.34 0.96
EOS 4719 97.34 0.97 97.25 0.96 97.34 0.97 96.99 0.97
FGC 41 83.33 0.77 66.67 0.73 83.33 0.77 50.00 0.60
HAC 339 58.57 0.71 67.14 0.77 72.86 0.81 71.43 0.80
KSC 38 100.00 1.00 75.00 0.75 75.00 0.86 100.00 0.89
LYI 54 36.36 0.40 36.98 0.44 27.77 0.38 9.09 0.14
LYT 20911 94.13 0.94 94.92 0.94 94.75 0.94 94.62 0.94
MMZ 2479 39.58 0.46 36.98 0.45 56.60 0.52 58.33 0.56
MON 3230 74.81 0.78 79.38 0.79 76.91 0.77 79.01 0.78
MYB 5238 68.76 0.70 70.20 0.70 61.26 0.68 73.09 0.73
NGB 7967 67.82 0.69 69.42 0.71 66.12 0.71 72.06 0.74
NGS 23628 94.24 0.91 92.86 0.92 93.32 0.92 93.65 0.93
PEB 2196 75.55 0.75 77.76 0.78 73.71 0.76 78.68 0.78
PLM 6137 93.90 0.93 91.49 0.93 92.16 0.93 91.69 0.93
PMO 9546 85.58 0.86 88.40 0.86 88.19 0.86 84.03 0.85

Balanced Accuracy 0.77 0.75 0.76 0.76

In the Oraiclebio dataset, ALPA delivers the highest accuracy in 23 classes, achieving a
balanced accuracy of 51.06% and performing similarly to ASL, which attains a balanced ac-
curacy of 52%, demonstrating its robustness across varying data support levels. Meanwhile,
CE averages 47.92% accuracy, and Focal Loss performs significantly worse, with an average
balanced accuracy of just 22%. Thus, ALPA stands out for its ability to handle diverse and
imbalanced datasets effectively.

7 Conclusion

In this study, we present a Padé approximation-based loss function with asymmetric focus-
ing, tailored for multi-class classification tasks with long-tailed distributions. Our proposed
loss function demonstrates competitive and superior performance on long-tailed datasets
when benchmarked against previous state-of-the-art approaches. We believe that our find-
ings can serve as a valuable resource for future research, offering a foundation for further
development and integration into new studies.
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8 Future work
The learning process of the model is intrinsically tied to data representation. Modifying the
loss function alone, however, may have limited potential for performance improvement. To
enhance class-wise accuracy, integrating loss functions with data augmentation strategies
and data generation pipelines presents a promising approach. Data augmentation artificially
expands the training dataset by creating modified versions of existing images, while data
generation pipelines synthesize entirely new samples. These methods can help balance class
representation and bolster model robustness. A more thorough exploration of these tech-
niques in future work could offer substantial benefits in addressing class imbalance.
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