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Abstract

Training neural networks with one-hot target labels often results in overconfidence
and overfitting. Label smoothing addresses this issue by perturbing the one-hot target la-
bels by adding a uniform probability vector to create a regularized label. Although label
smoothing improves the network’s generalization ability, it assigns equal importance to
all the non-target classes, which destroys the inter-class relationships. In this paper, we
propose a novel label regularization training strategy called Label Smoothing++, which
assigns non-zero probabilities to non-target classes and accounts for their inter-class rela-
tionships. Our approach uses a fixed label for the target class while enabling the network
to learn the labels associated with non-target classes. Through extensive experiments
on multiple datasets, we demonstrate how Label Smoothing++ mitigates overconfident
predictions while promoting inter-class relationships and generalization capabilities.

1 Introduction
One of the most common practices for training neural networks is cross-entropy loss with
one-hot target labels. However, it has been shown that this leads to overfitting and over-
confident predictions by the network [29]. Numerous regularization techniques have been
proposed to impose additional constraints to tackle this issue. Some of these techniques like
Cutout [6], Mixup [38], CutMix [36], and others [1, 8, 10] alter the input data and are ap-
plied without considering the object positions, potentially impacting such entities directly.
An alternative approach is label regularization, which operates on training labels. Label
smoothing is one of the easiest methods that create regularized targets by taking a weighted
sum of the one-hot probability vector and a uniform vector based on a hyperparameter α to
mitigate the overconfidence problem.

Nowadays, Label Smoothing has become one of the standard ways of training neural
networks [2, 19]. Even though it provides benefits in the form of generalization, it is known
to eliminate inter-class relationships [23]. By using a uniform probability vector, Label
Smoothing assigns equal weight to all the non-target classes, which means all the classes are
equally different from the target class. However, this is not always the case. For example,
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(a) Input (b) Vanilla (c) LS (d) LS++

Figure 1: Different types of labels generated by various sources. (a) Input. (b) Traditionally
(Vanilla), 1-hot probability vectors are used as labels. (c) Label Smoothing (LS) evenly
distributes a probability parameter (denoted as α , with a value of 0.1 in this context) across
all classes. (d) Label Smoothing (LS++) distributes α probability among the non-target
classes for all classes independently.

consider a 4-way classification of Bird, Car, Frog, and Truck. Here, the training label for
the Car class should have more weight assigned to Truck given their semantic similarity as
compared to other classes like Frog and Bird. Such inter-class relationships, overlooked by
Label Smoothing, can help enhance generalization abilities, knowledge distillation, learning
from noisy labels, and handling missing data [11, 23, 37].

This paper proposes a novel label regularization method called Label Smoothing++
(LS++) that generates regularized training labels from one-hot target labels. It is done by
retaining the confidence of the target class to be high while also assigning non-zero probabil-
ities to the non-target classes by accounting for inter-class relationships. In standard Label
Smoothing, the 1-hot target label is perturbed by adding a uniform distribution to the 1-hot
target vector. In Label Smoothing++, we determine a class-wise probability vector to add to
the 1-hot vector. Here, the samples of a class are constrained to produce the same outputs
for all the classes.

Label Smoothing++ provides flexibility in how the probabilities are assigned among the
non-target classes, which is essential for learning inter-class relationships. Refer to Figure 1
where we display targets generated by different label regularization techniques for a 4-class
classification problem. Through experiments on multiple datasets and in various settings, we
show the strengths of our proposed method, Label Smoothing++, compared to other label
regularization techniques.

2 Related Work

Using a 1-hot target label in neural network training is known to lead to overconfidence and
hinder generalization [29]. Label regularization techniques aim to modify training labels to
mitigate overconfidence. One of the earliest and easiest label regularization methods is Label
Smoothing, which combines the 1-hot vector with a uniform vector based on a hyperparam-
eter α [29]. Despite its advantages, Label Smoothing destroys inter-class relationships by
assigning equal weights to all non-target classes [23]. We aim to deviate from using a uni-
form vector by offering the network the flexibility to adjust its training label.

An alternative for regularizing network predictions is entropy maximization [26]. En-
tropy maximization directly penalizes the network for overconfident predictions. This tech-
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nique provides greater flexibility but requires hyperparameter tuning for the entropy max-
imization loss weight. Focal loss is a modification of the cross-entropy loss function that
was introduced to address overconfidence by assigning higher weights to samples with low
confidence and lower weights to those with high confidence [20, 22]. This approach mini-
mizes entropy maximization and a regularized KL divergence to prevent the network from
becoming excessively overconfident.

Knowledge distillation is considered a form of label regularization that involves generat-
ing targets from a larger network (the Teacher) and transferring this knowledge to a smaller
network (the Student) on a per-sample basis [11, 35]. The relationship of each sample to
non-target classes, as learned by the Teacher, helps regulate the student networks [11]. In
alignment with this concept, a trained network was used to train another network with the
same architecture in Teacher-Free Knowledge Distillation [35]. However, this approach in-
curs significant computational expenses as it requires training a network twice and generat-
ing outputs online. An alternative, Teacher-Free regularization, behaves similarly to Label
Smoothing but utilizes a high mixing coefficient of 0.9 to generate a smoothed probability
vector [35]. The network is trained to align predicted probabilities with this vector at a high
temperature, reducing computational costs but still relying on a uniform vector.

Online Label Smoothing is another label regularization approach that is based on net-
work predictions [37]. It computes average network predictions for each class and mixes
them with a 1-hot probability vector. While it diminishes the need to train the network
twice, it carries a substantial computational overhead as average network predictions must
be computed every epoch on the training set. Our approach also has a class-based alignment
(without the computational overhead of computing it every epoch) but only allows changes
in the distribution of probabilities among the non-target classes, unlike online Label Smooth-
ing, where training labels become 1-hot when network predictions tend towards 1-hot.

3 Methodology

3.1 Background
Consider a dataset D := {(xi,yi)}m

i=1 with K classes. For a pair (x,y), x is the input and y
is its corresponding target with y ∈ {1,2, . . . ,K}. Let ȳ = [ȳ1, ȳ2, . . . , ȳK ]

⊤ denote the one-
hot presentation of the target label y. A neural network G takes x as input and generates
a probability vector G(x) = ŷ = [ŷ1, ŷ2, . . . , ŷK ]. Here, ŷ is the predicted probability for the
input x. The traditional procedure for training G is minimizing the cross-entropy loss,

H(ȳ, ŷ) =−ȳ log ŷ =−
K

∑
i=1

ȳi log ŷi =− log ŷy. (1)

Training a neural network with 1-hot target labels often leads to issues of overconfidence and
overfitting [29]. Label smoothing is a popular label regularization technique that alleviates
this problem. It modifies the training label by using a weighted combination of the 1-hot and
a uniform probability vector.

ȳls = (1−α)ȳ+αu, (2)

where u = [ 1
K , . . . ,

1
K ]

⊤ is a uniform probability vector of size K and each element is equal to
1
K . α is a hyperparameter that decides the weight between 1-hot and the uniform probability
vector. Label Smoothing trains the network minimizing the same cross-entropy loss but with
regularized training label: H(ȳls, ŷ) =−ȳls log ŷ =−∑

K
i=1 ȳls

i log ŷi.
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Figure 2: Model Diagram of Label Smoothing++ (LS++). Our approach distributes α confi-
dence among the non-target classes using learnable targets for each class independently. This
promotes all samples of a class to achieve similar output. We train Label Smoothing++ with
symmetric cross-entropy loss but because of learnable targets, we stop the flow of gradients
from loss to some parameters (visually represented by double-slant lines).

3.2 Label Smoothing++
The idea behind label regularization is to reduce the confidence of the target class by a value
α and increment the confidence of all classes by the same amount α . Label Smoothing dis-
tributes the value α uniformly among all the classes. Instead of using a uniform assignment,
we propose to learn the optimal assignment. We assume that the samples of a class generally
share some similar characteristics. So, their output vector should share similarities as well.
With this understanding, we propose Label Smoothing++ (LS++).

We train the network to learn the assignment of the residual probability α among the non-
target classes for each target class independently. For every class y we learn a probability
vector Cy of length (K − 1) which represents the probability assignment of the non-target
K − 1 classes. We used a K − 1 length to distribute the residual α probability among the
non-target classes only. This ensures the probability of the target class remains unchanged
and only the non-target classes are adjusted. The regularized training label is then given by,

ȳls++ = (1−α)ȳ+αCy. (3)

Note: Cy has size K −1 but is adjusted to be length K after inserting a 0 at the ground truth
position y in eq. 3. We train the network to predict the same regularized training label for all
samples belonging to a class. The {Cy}K

y=1 vectors together form the C matrix of dimension
K ×K which is estimated by training. The C-Matrix has a diagonal element set to 0. Label
Smoothing++ provides the same mixing training label for samples belonging to a class but
different for each class. Our goal here is to provide freedom to the network to choose its
optimal training label while adhering to the class-level constraint. Since the label for the
target class is fixed, we only need to impose consistency on the non-target classes. Note:
The C-Matrix is not a symmetrical matrix, as class relationships can differ based on the
query class. We discuss this in more detail in the supplementary material.

Label Smoothing++ has training labels ȳls++ that need to be learned. For training the
network, we depart from the traditional cross-entropy loss, which works well only for fixed
training labels. The cross-entropy loss is an upper-bound on the Kullback-Leibler (KL)
divergence with, H(ȳls++, ŷ) = KL(ȳls++||ŷ)+H(ȳls++), where H(ȳls++) is the entropy of the
training label ȳls++. When the training label is fixed, such as in 1-hot or Label Smoothing, the
entropy is merely a constant. But with ȳls++, the training label contains learnable parameter
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Method ResNet18 ResNet34 ResNet50 ResNet101 DenseNet121

1-hot 75.87 79.38 78.79 79.66 79.04
LS [29] 77.26 79.06 78.80 79.88 80.38
TFKDsel f [35] 77.10 - - - 80.26
TFKDreg [35] 77.36 - - - -
OLS [37] - 79.96 79.35 80.34 -
Zipf’s LS [18] 77.38 79.03
FL-3 [22] - - 77.25 - -
FLSD-53 [22] - - 76.78 - -

LS++ (Ours) 79.33±0.23 80.25±0.14 81.05±0.73 81.13±0.52 80.71±0.13

Table 1: Top-1 Classification accuracy on CIFAR100 dataset using different networks.

C. Applying an entropy minimization loss on ȳls++ results in assigning all the probability
to one of the classes in Cy, which is undesirable. We address this using a symmetric cross-
entropy loss H(ȳls++, ŷ)+H(ŷ, ȳls++) where the network parameters G are trained using the
first term H(ȳls++, ŷ), and the C matrix is trained using the second term H(ŷ, ȳls++). The
H(ȳls++, ŷ) loss updates only the parameters in G and does not affect C thereby negating the
effect of the entropy term H(ȳls++). Likewise, H(ŷ, ȳls++) loss updates only matrix C.

4 Experiments

4.1 Datasets and Setup

We conducted extensive testing of our approach across a range of datasets, including Fash-
ionMNIST [34], SVHN [24], CIFAR10 [14], CIFAR100 [14], FER2013, Animals10N [27],
Tiny-ImageNet, and ImageNet-100, employing various network architectures [7, 9, 12, 15,
17, 40]. Due to hardware limitations, we used Tiny-ImageNet and ImageNet-100 as substi-
tutes for the original ImageNet dataset [4]. Tiny-ImageNet features 64×64 images with 200
classes, while ImageNet-100 uses 100 classes and the original 224×224 image size.

Our methodology was also applied to non-image modalities like Video, Text, and Audio.
In the case of the video modality, we utilized UCF101 [28] and HMDB51 [16] datasets,
employing Conv+LSTM (CLSTM) and a C3D [30] networks. The Conv+LSTM network
utilized a ResNet50 pre-trained on ImageNet as the backbone, with the LSTM layers trained
from scratch. The C3D network is a 3D convolution network pre-trained on the Sports-1M
dataset [13]. For the text modality, our approach was tested on 20Newsgroup, AGNews [39],
and YahooAnswers [39] datasets using pre-trained BERT model [5]. For the Audio modality,
we used MelSpectrograms of the GTZAN [31] and SpeechCommands [33] datasets. CNN
models pre-trained on ImageNet have shown enhanced generalization on the audio domain
[25]. Hence, we trained ResNet50 from scratch and also tested a pre-trained network. Full
details of the training augmentations and other details for all the datasets is available in the
supplementary material.

Across all tasks, we trained Label Smoothing++ with a consistent setting of α = 0.1.
The matrix C is stored as pre-softmax values (logits) and was initialized with zeros, resulting
in a uniform probability distribution for the non-target classes as the starting point. The code
for Label Smoothing++ can be found at https://github.com/s-chh/LSPP.
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Method ResNet18 ResNet50 ResNet101 ShuffleNet DenseNet121

1-hot 64.33 67.47 69.03 60.51 68.15
LS [29] 64.74 67.63 69.30 60.66 68.19
TFKDsel f [35] - 68.18 - 61.36 68.29
TFKDreg [35] - 68.15 - 60.93 68.37
MBLS [21] - 65.15 65.81 - -
Zipf’s LS [18] 59.25 62.64
FL-3 [22] - 50.31 62.97 - -
FLSD-53 [22] - 50.94 62.96 - -

LS++ (Ours) 65.07±0.08 69.01±0.46 70.04±0.30 63.24±0.49 68.90±0.11

Table 2: Top-1 Classification accuracy on Tiny-ImageNet dataset using different networks.

Dataset FMNIST SVHN CIFAR10 FER Animals10N ImageNet-100

Network LeNet LeNet AlexNet ResNet18 ResNet18 ResNet18 ResNet50

1hot 82.23±0.34 89.40±0.03 79.98±0.17 70.10±0.21 85.00±0.11 81.72 83.96
LS 82.55±0.62 89.35±0.09 80.66±0.20 70.61±0.10 86.13±0.19 82.22 84.58
TFKDreg 82.40±0.26 89.42±0.31 80.78±0.17 70.80±0.41 85.99±0.10 82.44 84.72
OLS 82.97±0.50 89.19±0.43 80.71±0.28 70.67±0.17 86.35±0.38 82.56 84.71
LS++ 83.79±0.23 89.77±0.21 81.19±0.05 70.80±0.22 86.51±0.15 82.70 85.06

Table 3: Top-1 Classification accuracy on FashionMNIST (FMNIST), SVHN, CIFAR10,
Facial expression recognition (FER), Animals10N, and ImageNet-100 datasets.

Modality Video Text Audio

Dataset UCF101 HDMB51 20NG AGNews YA GTZAN SC

Network CLSTM∗ C3D∗ CLSTM∗ C3D∗ BERT∗ R50* R50 R50* R50

1-hot 71.13 78.56 36.01 45.88 85.02 94.39 77.44 91.50 87.50 96.03 95.13
LS 71.87 81.82 37.91 49.74 85.15 94.50 77.51 92.50 87.50 96.22 95.29
LS++ 72.56 82.37 38.24 51.31 85.55 94.67 77.54 93.50 89.00 96.22 95.45

Table 4: Comparison of Top-1 test accuracies on Video, Text, and Audio Modalities.
CLSTM: Convolution + LSTM. ∗ denotes a pre-trained network was finetuned.

4.2 Results

We conducted a comprehensive evaluation of Label Smoothing++ (LS++) against other label
regularization techniques, including Label Smoothing (LS) [29], Online Label Smoothing
(OLS) [37], Margin-based Label Smoothing (MBLS) [21], Teacher-Free Knowledge Distil-
lation (TFKD) [35], and Focal loss [20, 22]. The summarized results can be found in Tables
1, 2, 3, and 4. ‘-’ indicates results were not available in the original paper. Notably, for
Tables 3 and 4, baseline experiments were conducted by us using the same setup as ours.

Label Smoothing++ consistently outperformed all compared approaches across differ-
ent modalities, datasets, and networks. This underscores the superiority of learned mixing
probability values over fixed or computed values. Furthermore, we showcase the impact of
different methods on the final output probabilities on the FashionMNIST dataset in Figure
4. Figure 4d exposes OLS collapsing to 1-hot training labels. Figure 4b and 4c demonstrate
the disruption of inter-class relationships by uniform training labels. Conversely, Figure 4e
validates LS++, preserves inter-class relationships, and regularizes outputs.
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(a) CIFAR-10 (b) FashionMNIST (c) Animals-10N

Figure 3: Learned C-Matrices. We can observe that the network favors the semantically close
classes while distributing the probabilities and in turn, learns the inter-class relationships.

(a) 1-hot (b) LS (c) TFKDreg

(d) OLS (e) LS++

Figure 4: Class-wise output probabilities on the training set of FashionMNIST dataset.

We also present learned C-Matrices on CIFAR10, FashionMNIST, and Animals-10N
datasets in Figure 3. The analysis reveals the network’s inclination towards assigning higher
probabilities to semantically proximate classes. For instance, in the CIFAR10 dataset, the
network exhibits a preference for classes like Cat for Dog, which are semantically closer.
Animals-10N is a fine-grain classification dataset and presents an interesting scenario with 5
pairs of confusing animals. The network consistently assigns probabilities to animals within
each pair, considering them as the closest alternatives. We also show C-Matrix for the case
of a large number of classes (CIFAR100) in the supplementary material.

5 Analysis

5.1 Cluster Visualization
In Figure 5, the top row showcases TSNE visualizations [32] of FashionMNIST’s training
set. Notably, employing 1-hot targets results in dispersed clusters, while Label Smoothing
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(a) 1-hot (b) Label Smoothing (c) Label Smoothing++

Figure 5: In the upper row, we present TSNE visualizations of various approaches on the
FashionMNIST dataset. The lower row shows L1-normalized cosine distance among the
class cluster centers. 1-hot targets result in dispersed clusters, while Label Smoothing and
Label Smoothing++ exhibit more compact clusters. However, Label smoothing places all
clusters at an equal distance, effectively eliminating inter-class relationships. In contrast,
Label Smoothing++ maintains similar inter-class relationships as observed in 1-hot training.

Method CIFAR10 CIFAR100 TinyImageNet

Vanilla Cross-Entropy 80.45 78.95 64.93
Symmetric Cross-Entropy-Original 79.92 78.27 64.39
Symmetric Cross-Entropy-Ours 81.19 79.33 65.07

Table 5: Ablation Study on training loss for Label Smoothing++. CE: Cross-entropy, SCE-
Original: Original symmetric cross-entropy that updates all parameters, SCE-Ours: Our
symmetric cross-entropy loss that updates different parameters.

and Label Smoothing++ yield more compact ones. Compact clusters are pivotal in mini-
mizing collisions and enhancing generalization capabilities. In the bottom row of Figure 5,
we analyze the L1-normalized cosine distance among class cluster centers. Label smoothing
evenly spaces out all clusters, effectively eliminating inter-class relationships. On the other
hand, Label Smoothing++ has the optimal effect that generates compact clusters, reduces
overconfidence, and achieves high generalization while preserving inter-class relationships.

5.2 Ablation Study

We perform an ablation study focusing on selecting training loss for Label Smoothing++.
Our investigation highlights distinctions in outcomes and the acquired C matrix through var-
ious loss functions, including standard cross-entropy (CE), original symmetric cross-entropy
(SCE-Original), and our symmetric cross-entropy (SCE-Ours). The matrix corresponding to
CIFAR10 can be found in Figure 6. Notably, both cross-entropy and original symmetric
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(a) CE (b) SCE-Original (c) SCE-Ours

Figure 6: C-Matrix learned by cross-entropy, symmetric cross-entropy (SCE-original), and
symmetric cross-entropy (SCE-ours) on CIFAR10. Cross-entropy and original symmetric
cross-entropy result in a low entropy matrix and only our loss function provides the desired
results. The targets can be generated by mixing these matrices with a 1-hot vector as per α .

Dataset CIFAR100 Tiny-ImageNet

Teacher R34→R18 R34→R34 R34→R50 R50→SN R50→SN R101→SN D121→SN

1-hot 78.67 79.09 80.83 72.51 66.56 66.39 66.39
LS 79.40 80.15 81.15 71.70 66.58 66.74 66.80
LS++ 79.90 80.38 81.16 72.64 66.89 67.00 67.43

PT-LS++ 79.75 79.90 80.93 72.59 64.10 64.76 64.75

Table 6: Comparison of various teachers in the context of knowledge distillation, we con-
sider three different teacher models: 1-hot, Label Smoothing (LS), and Label Smoothing++
(LS++), each trained with their respective loss functions. Additionally, we introduce a proxy
teacher model (PT-LS++), where the C-Matrix learned by the teacher network (trained with
LS++) serves as the guiding information for training the student models.

cross-entropy result in low entropy vectors. This outcome stems from the indirect entropy
minimization loss, as elaborated in section 3.2. Contrastingly, our symmetric cross-entropy
achieves the desired result by appropriately distributing probabilities. The impact of this on
generalization is illustrated in Table 5, revealing a noticeable degradation in performance.

5.3 Knowledge Distillation with a Proxy Teacher

In knowledge distillation, a teacher network plays a guiding role in training a student net-
work. The teacher network understands inter-class relations within a sample across all
classes and generates regularized training labels for the student, enhancing its generaliza-
tion. In our scenario, the C-Matrix serves as a proxy teacher (PT-LS++) in the absence of a
teacher network. Leveraging the C-Matrix allows us to generate regularized training labels
for each class instead of per sample. We conducted experiments on CIFAR-100 and Tiny-
ImageNets for various transfer tasks. The student networks were trained using traditional
cross-entropy loss, except that a teacher network provided training labels. For the proxy
teacher (PT-LS++), training labels were created using the learned C-Matrix of the teacher
network (trained with Label Smoothing++).

The results are in Table 6. As expected, knowledge distillation improves accuracy in all
cases, with the network trained with LS++ acting as the most effective teacher. The proxy
teacher (PT-LS++) achieves lower performance compared to other teachers but still outper-
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Dataset CIFAR100 FashionMNIST TinyImageNet ImageNet-100

1-hot 79.38 86.66 64.33 81.72
LS++ 80.25↑ 87.47↑ 65.07↑ 82.22↑

Co [6] 80.11 88.36 65.86 82.86
Co + LS++ 80.44↑ 88.92↑ 66.53↑ 83.04↑

Mx [38] 81.31 88.48 66.17 81.88
Mx + LS++ 81.46↑ 88.59↑ 66.41↑ 82.88↑

Cx [36] 81.95 88.11 68.50 83.50
Cx + LS++ 82.24↑ 88.27↑ 68.62↑ 83.66↑

RA [3] 80.01 92.40 65.87 82.88
RA + LS++ 80.24↑ 92.85↑ 66.05↑ 83.54↑

Table 7: Application of Label Smoothing++ with Input Augmentations techniques - Co:
Cutout, Mx: Mixup, Cx: CutMix, RA: RandAugment.

forms training the network directly (refer Table 1 and 2). The biggest advantage of the proxy
teacher is its independence from the teacher model’s output, which can be computationally
expensive. In our ResNet101 → ShuffleNet experiments on TinyImageNet, the proxy teacher
took only half the time to train the student compared to traditional knowledge distillation.

5.4 Compatibility with Input Augmentations
In this section, we assess the compatibility of Label Smoothing++ with input augmentation
techniques such as Cutout, Mixup, Cutmix, and Randaugment. The results of this experiment
are presented in Table 7 using CIFAR100, FashionMNIST, Tiny-ImageNet, and ImageNet-
100 datasets with ResNet34, ResNet18, ResNet18, and ResNet18, respectively. Our findings
indicate that label regularization seamlessly integrates with input regularization techniques.
Employing input and label regularization together yields optimal performance, as evidenced
by the results in the table.

6 Conclusion
In this paper, we introduced a label regularization technique termed Label Smoothing++,
designed to enable neural networks to select their optimal training labels. Our approach uses
different training labels for each class while ensuring that samples within the same class
yield consistent outputs. The training labels collectively form a C-Matrix which captures
the inter-class relationships and serves as a proxy teacher for knowledge distillation. Our
proposed label regularization approach is compatible with input regularization and provides
a performance boost when used together. Extensive experimentation across various datasets
demonstrates that Label Smoothing++ reduces overconfidence and promotes high general-
ization and inter-class relationships.
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