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Figure 1: Processing of different types of inputs by Vision Transformer.
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1 Step by Step PatchRot Image Construction
In Figure 1, we show the construction of different input types including our proposed PatchRot
image. Figure 1a shows the processing of an original input by a Vision Transformer. Let’s
assume the image is 32×32 and the patch size is 4×4. This results in 32

4 × 32
4 = 8×8 = 64

patches. Figure 1b shows the original image rotation input. It rotates the image before
splitting it into patches.

Figure 1d shows the creation of the PatchRot image. PatchRot image uses a patch size
of P′ = P+B = 8. This results in 32

8 × 32
8 = 4× 4 = 16 patches. From each 8× 8 patch,

we extract the patch of the original patch size 4× 4 using random crops (marked as green
boxes). This results in 16 patches of size 4× 4, which makes the PatchRot input of size
16× 16. Next, the patches are rotated by random rotation angles to produce the PatchRot
input. Based on the PatchRot input we modify the image rotation prediction input. Like the
original rotation prediction input, we rotate the whole image but extract a random crop of
16×16 to match the PatchRot input size. Figure 1c shows our image rotation input.

Vision Transformer processes both our image rotation and PatchRot images together.
Note the original input has 64 patches, whereas the input of our method has only 16 ( 1

4 th)
patches. Our approach saves on computation per image by reducing the input size and dras-
tically decreasing the number of patches. This process of creating the inputs is done in the
dataloaders, resulting in negligible overheads.

2 More Attention Maps
Here, we present more attention maps of our ViT network trained using PatchRot on the
validation set of Tiny-ImageNet in Figure 2. We can see that the ViT learns to attend to the
main object in the image without any need for the training labels.
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Figure 2: More attention maps of ViT trained using PatchRot on the validation set of Tiny-
ImageNet. Odd row: Input and Even row: Attention Map.
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3 Training Details

This section discusses training details for our approach and the baselines for all the experi-
ments.

3.1 Network Details

We used the DeiT-Tiny Vision Transformer for all our experiments [12]. It is a much smaller
version of the original ViT [5] and contains only 5.8 million parameters instead of 86 million
(Original ViT). While training the network from random initialization (pretraining and su-
pervised training from scratch), we used Adam Optimizer with a learning rate and a weight
decay of 5× 10−4 and 5× 10−2, respectively. While fine-tuning the network, we used a
learning rate of 1× 10−3 with a layer-wise learning rate decay of 0.75 (similar to Masked
AutoEncoder [8]). We always warmed up the learning rate and then decayed it with a cosine
scheme. We used basic augmentations (mentioned below) during pretraining and fine-tuning;
no advanced augmentations (like Mixup [15], CutMix [14], PatchSwap [3] etc.) were used
for pretraining/fine-tuning.

3.2 Baseline Details

3.2.1 Rotation Prediction [6]

We used four rotation angles of 0°, 90°, 180°, or 270°of an image together in a mini-batch.
This effectively increases the batch size to four times.

3.2.2 SIMCLR [1]

We used two views of each input image. We applied the following augmentations on each
view: RandomResized Crops, Random Horizontal flips (wherever applicable), Random
Grayscale with 0.2 probability, and Color Jitter of strength 0.4, 0.4, 0.4, 0.1 with 0.8 prob-
ability. The MLP heads of SIMCLR consist of two fully connected layers with 96 output
neurons in both and a ReLU non-linearity after the first layer.

3.2.3 MoCo v2 [2, 7]

We used two views of each input image. We applied the following augmentations on each
view: RandomResized Crops, Random Horizontal flips (wherever applicable), Random
Grayscale with 0.2 probability, and Color Jitter of strength 0.4, 0.4, 0.4, 0.1 with 0.8 prob-
ability. The MLP heads of Moco consist of two fully connected layers with 96 output
neurons in both and a 1D-BatchNorm with ReLU non-linearity after the first layer and an
L2-normalization after the last layer. The hyperparameter memory bank, momentum, and
temperature are set to 4096, 0.999, and 0.2, respectively.

3.2.4 Masked AutoEncoder [8]

We used a masking ratio of 0.75 to create the input images. We pretrained ViT with double
the epochs for this method as it took longer to converge.
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3.2.5 PatchRot

Our approach uses four rotation angles of 0°, 90°, 180°, or 270°for the Image Rotation
prediction together in a mini-batch along with the PatchRot image. This effectively increases
the batch size to five times. However, our method uses a buffer size equal to the patch size
which results in reducing the input size to half the original image size. Due to this, the
number of patches per input in our method is decreased to just 1

4 th. The number of patches
increases computations quadratically in ViTs, and our approach saves computing by using
just 1

4 th number of patches.

3.3 Dataset-Specific Details

3.3.1 CIFAR10 and CIFAR100 [9]

• Input size: 32×32

• Patch size: 4×4

• Batch size: 256

• Pretraining epochs: 300

• Fine-tuning epochs: 50

• Supervised training epochs: 300

• Learning rate warm epochs for pretraining and supervised training: 10

• Learning rate warm epochs for fine-tuning: 5

• Augmentations: Padding of size 4 with Random Crops, and random horizontal flips.

3.3.2 FashionMNIST [13]

• Input size: 32×32

• Patch size: 4×4

• Batch size: 256

• Pretraining epochs: 150

• Fine-tuning epochs: 25

• Supervised training epochs: 125

• Learning rate warm epochs for pretraining and supervised training: 10

• Learning rate warm epochs for fine-tuning: 5

• Augmentations: Padding of size 4 with Random Crops, and random horizontal flips.
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3.3.3 SVHN [10]

• Input size: 32×32

• Patch size: 4×4

• Batch size: 256

• Pretraining epochs: 150

• Fine-tuning epochs: 25

• Supervised training epochs: 125

• Learning rate warm epochs for pretraining and supervised training: 10

• Learning rate warm epochs for fine-tuning: 5

• Augmentations: No augmentations.

3.3.4 Animals-10N [11] and TinyImageNet [4]

• Input size: 64×64

• Patch size: 8×8

• Batch size: 256

• Pretraining epochs: 150

• Fine-tuning epochs: 25

• Supervised training epochs: 150

• Learning rate warm epochs for pretraining and supervised training: 10

• Learning rate warm epochs for fine-tuning: 5

• Augmentations: Padding of size 4 with Random Crops, and random horizontal flips.

3.3.5 ImageNet100 [4]

• Input size: 224×224

• Patch size: 16×16

• Batch size: 128

• Pretraining epochs: 150

• Fine-tuning epochs: 25

• Supervised training epochs: 150

• Learning rate warm epochs for pretraining and supervised training: 10

• Learning rate warm epochs for fine-tuning: 5

• Augmentations: Random resized crops of 224 along with random Horizontal flips.
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