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Abstract

Robot-assisted minimally invasive surgery benefits from enhancing dynamic scene
reconstruction, as it improves surgical outcomes. While Neural Radiance Fields (NeRF)
have been effective in scene reconstruction, their slow inference speeds and lengthy train-
ing durations limit their applicability. To overcome these limitations, 3D Gaussian Splat-
ting (3D-GS) based methods have emerged as a recent trend, offering rapid inference
capabilities and superior 3D quality. However, these methods still struggle with under-
reconstruction in both static and dynamic scenes. In this paper, we propose HFGS,
a novel approach for deformable endoscopic reconstruction that addresses these chal-
lenges from spatial and temporal frequency perspectives. Our approach incorporates de-
formation fields to better handle dynamic scenes and introduces Spatial High-Frequency
Emphasis Reconstruction (SHF) to minimize discrepancies in spatial frequency spectra
between the rendered image and its ground truth. Additionally, we introduce Tempo-
ral High-Frequency Emphasis Reconstruction (THF) to enhance dynamic awareness in
neural rendering by leveraging flow priors, focusing optimization on motion-intensive
parts. Extensive experiments on two widely used benchmarks demonstrate that HFGS
achieves superior rendering quality. Source code is available at https://github.
com/zhaohaoyu376/HFGS.
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1 Introduction
Endoscopic procedures are foundational to minimally invasive surgery, significantly reduc-
ing trauma and hastening patient recovery [6, 21, 25]. In Robotic-Assisted Minimally Inva-
sive Surgery (RAMIS), the reconstruction of a 3D model of the surgical scene from stereo
endoscopes is critical for surgical precision and efficiency. This technology enables surgeons
to visualize observed tissues in 3D, which enhances their spatial awareness and navigation
capabilities [15, 26]. Despite the many benefits of endoscopic reconstruction, several chal-
lenges remain, including limited field-of-view, obstructions, and dynamic tissue deforma-
tion [24, 28, 32, 39]. Previous studies [9, 13, 28, 32, 39, 42] have successfully employed
depth maps for endoscopic reconstruction; however, these methods still face two signifi-
cant issues: the lack of sufficient details in generated models and inadequate rendering of
non-rigid deformations.

Recent advancements in endoscopic 3D reconstruction have been significantly enhanced
by Neural Radiance Fields (NeRFs) [17]. EndoNeRF [28], a pioneering work, is the first
to apply NeRF to endoscopic scenes for reconstructing deformable tissues using dual neural
fields. Another approach, EndoSurf [39], utilizes the signed distance field (SDF) [27, 37]
to regulate surface geometry. Although these methods produce satisfactory outcomes, they
demand extensive computational resources. Rendering each image necessitates querying
radiance fields at numerous points and rays, which significantly limits rendering speed and
poses considerable challenges for practical applications, such as intraoperative use [4].

To address these issues, 3D Gaussian Splatting (3D-GS) [10] emerges as an effective
alternative, providing rapid inference capability and enhanced quality of 3D representation.
By optimizing anisotropic 3D Gaussians with a collection of scene images, 3D-GS effec-
tively captures the spatial positioning, orientations, color properties, and alpha blending
factors. 3D-GS reconstructs not only the geometry but also the visual texture of scenes
with rapid rendering performances [10]. Although 3D-GS is extended to represent dynamic
scenes [9, 13, 14, 35, 42], it often suffers from under-reconstruction [10] during the process
of Gaussian densification [40], which affects both static and dynamic scenes. The under-
reconstruction can be clearly observed with blur and artifacts in the rendered 2D images, the
discrepancy of frequency spectrum of the render images and the corresponding ground truth,
and the predicted optical flow results by [30], as illustrated in Fig. 1.

In this paper, we present an innovative method called HFGS for deformable endoscopic
tissues reconstruction that addresses the under-reconstruction from both spatial and tempo-
ral frequency perspectives. Specifically, we propose a module called Spatial High-Frequency
Emphasis Reconstruction (SHF), which minimizes the discrepancy in frequency spectra be-
tween the rendered image and the corresponding ground truth by focusing specifically on
spatial high-frequency components of images. Additionally, we propose Temporal High-
Frequency Emphasis Reconstruction (THF) module which enhances dynamic awareness in
neural rendering by utilizing flow priors. This module targets motion areas identified through
flow-based methods as temporal high-frequency components during optimization, thus im-
proving the fidelity of moving tissues.

To summarize, our main contributions are three-fold: 1) We propose a Frequency Regu-
larization Module to reduce spectral mismatches between rendered images and ground truth
images, thereby improving in frequency space. 2) We introduce a novel module which offers
dynamic awareness to existing regularization in neural rendering with the help of flow prior,
providing special attention to the motion parts during optimization. 3) Experiments over
multiple benchmarks show that HFGS achieves superior performances.
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Figure 1: For the sample image from ENDONERF [28], (a-c) show the rendered image, the
noise power spectrum (NPS) where blue indicates it is closer to GT, and optical flow predic-
tions based on adjacent frame. Our HFGS not only achieves the best results, reconstructing
the most detailed information and exhibiting the bluest NPS, but also renders images with
optical flow that are closer to the GT.

2 Related Works

Neural Rendering for Dynamic Scenes. Neural Radiance Fields (NeRF) [17] marks a
significant advance in high-quality neural rendering. Several efforts aim to adapt NeRF for
dynamic scenes. For instance, some works [11, 12] integrate NeRF with time-conditioned
latent codes to effectively represent dynamic scenes. Another group of works [19, 20, 22]
incorporate an explicit deformation field that bends rays as they pass through various targets
into a canonical space.

Some works [28, 32, 39] use NeRF to represent dynamic endoscopic scenes. A good
representative is EndoNeRF [28] which follows the modeling of D-NeRF [22]. It trains
two neural fields: one for tissue deformation and the other for canonical density and color.
EndoNeRF can synthesize reasonable RGB images with post-processing filters. To tackle
the lengthy training time requirement, LerPlane [32] constructs a 4D volume by introducing
1D time to the existing 3D spatial space. Although significantly accelerating the training
process, they still cannot meet the practical need of rendering speed.

Reconstruction with 3D Gaussian Splatting. Additionally, 3D-GS [10] is notable for
its pure explicit representation and differential point-based splatting method, enabling real-
time rendering of novel views through a customized CUDA-based differentiable Gaussian
rasterization pipeline. The application of 3D-GS in dynamic reconstruction is just beginning
to unfold. D-3DGS [14] is proposed as the first attempt to adapt 3D-GS into a dynamic
setup. Other works [29, 34, 36] model 3D Gaussian motions with a compact network or 4D
primitives, resulting in highly efficient training and real-time rendering.

Some works [13, 42] make the first attempts to apply 3D-GS to represent dynamic endo-
scopic scenes. EndoGS [42] employs surface-aligned Gaussian Splatting [7] to reconstruct-
ing deformable endoscopic tissues. EndoGaussian [13] introduces Holistic Gaussian Initial-
ization (HGI) and Spatio-temporal Gaussian Tracking (SGT) to initialize dense Gaussians
and model surface dynamics, respectively. However, these approaches often suffers from
under-reconstruction [10] during the process of Gaussian densification [40]. In contrast, our
method also models 3D Gaussian motions with a deformation network for deformable en-
doscopic tissues reconstruction but addresses the under-reconstruction from both spatial and
temporal frequency perspectives.
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3 Preliminary

3.1 3D Gaussian Splatting
3D Gaussian Splatting (3D-GS) [10] explicitly represents scenes using point clouds, where
each point is modeled as a 3D Gaussian defined by a covariance matrix Σ and a center point
X , the latter referred to as the mean. The value at point X is G(X) = e−

1
2X

T Σ−1X . For
differentiable optimization, the covariance matrix Σ is decomposed into a scaling matrix S
and a rotation matrix R, such that Σ = RSST RT .

In rendering novel views, differential splatting as introduced by [38] and [43], involves
using a viewing transform W and the Jacobian matrix J of the affine approximation of the
projective transformation to compute the transformed covariance matrix: Σ′ = JWΣW T JT .
Each 3D Gaussian is characterized by several attributes: position X ∈ R3, color defined by
spherical harmonic (SH) coefficients C ∈Rk (where k is the number of SH functions), opacity
α ∈ R, rotation factor r ∈ R4, and scaling factor s ∈ R3. The color and opacity at each pixel
are computed from the Gaussian’s representation G(X) = e−

1
2X

T Σ−1X . The blending of N
ordered points overlapping a pixel is given by the formula:

C = ∑
i∈N

ciαi

i−1

∏
j=1

(1−αi). (1)

Here, ci, αi represent the density and color of this point computed by a 3D Gaussian G with
covariance Σ multiplied by an optimizable per-point opacity and SH color coefficients.

3.2 Dynamic Gaussian Splatting with Deformation Fields
In our representation of a surgical scene as a 4-dimensional volume, the deformation of
tissues is modeled over time. We adopt Gaussian deformation to represent the time-varying
motions and shapes, based on the designs of [29]. Our primary objective is to accurately learn
both the static parameters, {(µµµ,sss,rrr,ssshhh,σ)} and dynamic parameters, {∆(µµµ,sss,rrr,ssshhh,σ)} of
the 3D Gaussians. For each 3D Gaussian, we compute the deformation using the the mean
µµµ = (x,y,z) and the time t. We encode the spatial and temporal information using six or-
thogonal feature planes [2, 5, 29, 31, 32]. Specifically, the multi-resolution HexPlane [2, 5]
consists of three spatial planes XY,XZ,Y Z and three spatial-temporal planes XT,Y T,ZT .
These planes encode features F ∈ Rh×N1×N2 , where h represents the hidden dimension and
N1,N2 indicate the plane resolution. We utilize bilinear interpolation B to interpolate the
four nearby queried voxel features. Voxel feature can be represented in the format of matrix
element-wise multiplication with operation ⊙:

fvoxel(µµµ, t) = B (FXY ,x,y)⊙B (FY Z ,y,z) . . .B (FY T ,y,τ)⊙B (FZT ,z,τ) . (2)

We employ a single MLP to update the attributes of Gaussian. This MLP integrates all
the information to decode various parameters such as the position, scaling factor, rotation
factor, spherical harmonic coefficients, and opacity:

∆(µµµ,sss,rrr,ssshhh,σ) = MLP( fvoxel(µµµ, t)). (3)
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Figure 2: Pipeline of the proposed HFGS. We utilize monocular images, estimated depths
from Depth-Anything [33] and tool masks for training [9]. A single MLP is used to derive
the deformation associated with these 3D Gaussian, given the features queried via voxel
planes. Then we address the under-reconstruction by emphasizing spatial and temporal high-
frequency components.

Using the mean and time as inputs, we compute features for 3D Gaussians by querying
multi-resolution voxel planes. A single MLP is then employed to derive the deformations
of these Gaussians. Through differentiable rasterization, we generate rendered images and
depth maps. The accuracy of these outputs is validated using ground truth images, depth
maps, and tool masks, which serve as the basis for supervision.

4 Method
Given a single-viewpoint stereo video of a dynamic surgical scene, we aim to reconstruct
3D structures and textures of surgical scenes without occlusion of surgical instruments. We
denote {(Ii,Di,Mi)}T

i=1 as a sequence of input stereo video frames, where T is the total
number of frames, Ii∈ RH×W×3 and Di∈ RH×W is the i-th left RGB image and depth map
with height H and width W . Mask Mi is utilized to specifically exclude pixels from surgical
tools. Time of the i-th frame is i/T . We formulate our solution with a probabilistic model to
learn statistics for depth from Depth-Anything [33].

In this paper, we present an innovative method called HFGS for deformable endoscopic
tissues reconstruction that addresses the under-reconstruction by emphasizing spatial and
temporal high-frequency components, as shown in Fig. 2. We first introduce Spatial High-
Frequency Emphasis Reconstruction (SHF) in Section 4.1 which minimizes differences in
the spatial frequency spectra of the rendered image and the corresponding ground truth by
focusing specifically on spatial high-frequency components. We then introduce Temporal
High-Frequency Emphasis Reconstruction (THF) in Section 4.2 which enhances dynamic
awareness in neural rendering by utilizing a flow prior. This module targets motion areas
identified through flow-based methods as temporal high-frequency components during opti-
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mization, thus improving the fidelity of moving tissues. Finally, we describe the optimization
process in Section 4.3.

4.1 Spatial High-Frequency Emphasis Reconstruction
In naive pixel-wise L1 loss implementations, the average gradient might be quite small,
which can occur even in regions that are not well-reconstructed, which misleads the Gaus-
sian densification [40]. As Gaussian densification is not applied to Gaussians with small
gradients [10], these Gaussians cannot be densified through splitting into smaller Gaussians,
leading to under-reconstruction. Spatial high-frequency components focus on object struc-
tures resembling identity [18, 41]. Thus, it is reasonable to guide the Gaussian densification
by applying regularization in spatial frequency domain. For an ground truth image Ii, its
frequency space signal F(Ii) can be obtained with Fast Fourier Transform (FFT), which is
defined as follows:

F(Ii)(u,v,c) =
H

∑
h=1

W

∑
w=1

Ii(h,w,c)e− j2π( h
H u+ w

W v) =A(Ii)e jP(Ii), (4)

where j2 = −1, and A(Ii) and P(Ii) refer to the amplitude and phase spectra of Ii, respec-
tively. We center the low-frequency components within the frequency spectrum, and then
introduce a binary mask B ∈ RH×W , where all values are zero except in the central region.
Following [41], the high-frequency components Ah(Ii) are given by:

Ah(Ii) = (I −B)⊙A(Ii), Ih
i = F−1(Ah(Ii)), (5)

where ⊙ denotes element-wise multiplication and F−1 means the Inverse Fast Fourier Trans-
form (IFFT). We then obtain the spatial domain representation of the image Ih

i that contains
only the spatial high-frequency components. The Lsh f is defined as:

Lsh f (Ii, Îi) =
W

∑
x=1

H

∑
y=1

Ih
i (x,y) · |Ii(x,y)− Îi(x,y)|, (6)

where Îi means the rendered image.

4.2 Temporal High-Frequency Emphasis Reconstruction
To extend 3D-GS [10] to dynamic scenes, Gaussian motions and shape changes are modeled
using a Gaussian deformation field network, as discussed in [13, 29, 42]. However, these
methods struggle to effectively render dynamic images in scenarios with rapid movement,
such as in 3D dynamic endoscopic scene reconstruction [8]. This limitation stems from their
insufficient use of the abundant motion data available from 2D observations. To address this,
we propose a module called Temporal High-Frequency Emphasis Reconstruction (THF),
which applies regularization in the temporal frequency domain of the deformation field net-
work. This module enhances dynamic awareness in neural rendering by incorporating a flow
prior. This flow prior is designed to prioritize regions exhibiting more significant movements
in the current frame, thereby improving the rendering of dynamic scenes.

We feed both the rendered image Îi along with its adjacent frame Îi−1, and the correspond-
ing ground truth image Ii with its adjacent frame Ii−1 into a pre-trained predictor P [30]. For
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the first frame, we treat its adjacent frame as the frame itself. This process is used to predict
the optical flows f̂i and fi.

f̂i = P(Îi, Îi−1), fi = P(Ii, Ii−1). (7)

We define the loss Lth f as the sum of the Charbonnier loss [3] and the census loss [16],
Lth f = Lchar +Lcen, which improves the quality of interpolation, making it more resilient to
outliers and structural variations in the scene.

4.3 Optimization
In reconstructing from videos with tool occlusion, we face challenges similar to [28, 31, 32].
We address these challenges by using labeled tool masks to identify unseen pixels. We only
optimize in the seen part by introducing the term (1−Mi), using the L1 loss as follows:

LL1(Ii, Îi) =
W

∑
x=1

H

∑
y=1

|(1−Mi(x,y))⊙ Îi(x,y)− (1−Mi(x,y))⊙ Ii(x,y)|. (8)

Monocular reconstruction results in limited 3D information. We address this by integrat-
ing a depth-guided loss using estimated depth maps Di with Huber loss LD(i) following [42].
We also apply total variation (TV) loss LTV as [29] to regularize the rendered images. To
sum up, our final optimization target is:

L(Ii, Îi) =LL1(Ii, Îi)+λdLD(Ii, Îi)+λsLS(Ii)+λtvLTV (Ii, Îi)

+λsh fLSHF(Ii, Îi)+λth fLT HF(Ii, Îi),
(9)

where LS is the surface-aligned item in EndoGS [42], which is modified from SuGaR [7] to
encourage the surface alignment of the Gaussians. Hyperparameters λD, λtv, λsh f and λth f
control the regularization strength. We set λd to 0.5, λs to 0.2, λtv to 0.1, λsh f to 1, and λth f
to 10.

5 Experiments

5.1 Datasets
We conduct experiments on two public endoscope datasets, namely ENDONERF [28] and
SCARED [1]. The ENDONERF dataset [28] includes two cases of in-vivo prostatectomy
data providing single-viewpoint estimated depth maps and manually annotated tool masks.
The SCARED dataset [1] offers ground truth RGBD images from four porcine cadaver ab-
dominal anatomies, using a DaVinci endoscope and a projector. We preprocess SCARED
dataset according to [13]. We evaluate our method by comparing it with recent surgical scene
reconstruction methods [13, 28, 39, 42] using image quality metrics such as PSNR, SSIM,
and LPIPS as outlined in EndoGS [42].

5.2 Implementation Details
In this work, we implement a two-stage training methodology as [29]. Initially, we focus
on training the static field using 3D Gaussian models, followed by training the deformation
field. The training involves 3,000 iterations for the static field and extends to 60,000 for the
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Method ENDONERF SCARED FPSPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
EndoNeRF [28] 34.20 0.935 0.156 23.52 0.754 0.400 0.2
ForPlane-9k [31] 33.63 0.918 0.100 22.68 0.745 0.431 1.7
ForPlane-32k [31] 36.65 0.947 0.056 23.50 0.762 0.348 1.7
EndoSurf [39] 34.99 0.955 0.113 23.94 0.779 0.384 0.04
EndoGS [42] 36.84 0.963 0.041 26.46 0.770 0.339 ∼70
EndoGaussian [13] 37.99 0.966 0.043 26.39 0.792 0.530 ∼100
HFGS 38.14 0.971 0.033 27.47 0.796 0.311 ∼70

Table 1: Quantitative metrics of appearance (PSNR/SSIM/LPIPS) on ENDONERF [28] and
SCARED [1]. The best and the second best results are denoted by pink and yellow.

deformation field. Initial point clouds are estimated using COLMAP [23]. All models are
trained on an NVIDIA RTX 3090 GPU.

5.3 Comparison with State-of-the-art Methods

We conduct comparative experiments against various state-of-the-art (SOTA) methods for
surgical scene reconstruction, including NerF-based methods such as EndoNeRF [28], For-
Plane [31] (an updated version of LerPlane [32]) and EndoSurf [39], and 3D-GS-based meth-
ods such as EndoGS [42] and EndoGaussian [13].

Table. 1 presents a quantitative comparison on two public dataset. The FPS in Table. 1
represents the values collected by these methods on the ENDONERF [28] dataset, where
all measurements are conducted using a single NVIDIA GeForce RTX 3090 GPU. We ob-
serve that while EndoNeRF [28], ForPlane [31] and EndoSurf [39] achieve high perfor-
mance, however, they require hours of training and testing, making them time-consuming.
In contrast, HFGS benefits from the rendering efficiency of Gaussian Splatting, enabling it
to achieve real-time rendering speeds, and outperforms other SOTA methods in all evaluated
metrics on both datasets.

Fig. 3 presents a qualitative comparison between HFGS and competitive methods. No-
tably, the visualizations show that our HFGS preserves a significant amount of details with
accurate geometry features. Both quantitative and qualitative results strongly support the
effectiveness of HFGS in achieving high-quality 3D reconstruction at real-time inference
speeds. This highlights its potential for future real-time endoscopic applications.

Method ENDONERF-pulling ENDONERF-cutting
PSNR SSIM LPIPS PSNR SSIM LPIPS

Baseline 36.27 0.933 0.057 37.00 0.961 0.036
Ours w/o SHF 38.06 0.967 0.044 37.51 0.969 0.024
Ours w/o THF 37.93 0.965 0.044 37.67 0.968 0.023
Ours 38.44 0.968 0.043 37.83 0.969 0.022

Table 2: Ablation studies on the impact of each module in our method on ENDONERF [28].
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Figure 3: Illustration of reconstruction results of previous works and ours on scene "pulling
soft tissues" and "cutting tissues twice" on ENDONERF [28].

5.4 Ablation Studies

To evaluate the effectiveness of our proposed modules, including SHF and THF, we conduct
ablation experiments using the ENDONERF [28] dataset. The corresponding results are
shown in Table 2. In Fig. 4, we show the effectiveness of the THF. THF helps the model re-
construct more detailed information and addresses the under-reconstruction in static scenes.
Baseline method struggles to effectively render dynamic images. This phenomenon can be
mitigated during the optimization with THF as shown in Fig. 1. Results with THF are closer
to the ground truth in the predicted optical flow results by [30], indicating more accurate
rendering of dynamic scenes.

To sum up, SHF and THF all contribute to performance gains and address the under-
reconstruction both in static and dynamic scenes. It is worth mentioning that our HFGS has
a huge improvement based on the baseline without any extra inference time.

6 Conclusion

We introduce a method for deformable endoscopic tissue reconstruction that leverages spa-
tial and temporal frequency analyses to improve under-reconstruction issues, enabling high-
quality, real-time reconstruction from single-viewpoint videos. Our method includes two
modules that enhance rendering in both static and dynamic scenes. Testing on two public
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(a) Reference (b) w/o SHF (c) w/ SHF
Figure 4: Ablation on SHF. We show rendering frames w/ and w/o SHF on scene "pulling
soft tissues" on ENDONERF [28].

datasets confirms significant performance gains over existing methods. However, 3D recon-
struction from single-viewpoint videos still faces challenges for surgical use. Future work
should focus on integrating multiple surgical cameras to enhance 3D tissue reconstruction
accuracy and practicality in clinical environments.
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