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Abstract

In this Supplemental File, we include the following:

1. The pseudo-code of the proposed ACIL algorithm (Section 1)

2. The experimental setup details (Section 2)

3. Study of the backbone network architecture (Section 3)

4. Performance with varying number of episodes (Section 4)

5. Computation time analysis (Section 5)

6. Ablation studies (Section 6)

7. Performance analysis using the Retention metric (Section 7)

1 Pseudo-code of the ACIL Algorithm

The pseudo-code of the proposed ACIL algorithm is depicted in Algorithm 1. As evident
from the pseudo-code, our algorithm is computationally lightweight, simple and easy to
implement.

2 Experimental Setup Details

Table 1 details the following numbers for each dataset used in our study: (i) number of la-
beled samples (XL

n ) in each episode; (ii) number of unlabeled samples (XU
n ) in each episode;

(iii) budget for the exemplar set (En) in each episode. The average values over 3 random
trials are reported.
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Algorithm 1 The Proposed ACIL Framework
Require: A DNN architecture for image classification, exemplar set budget k for each

episode, weight parameter λ

1: for n = 1,2, . . .N do
2: Receive the labeled data XL

n and the unlabeled data XU
n in episode n. Let Cepisode

denote the set of classes in XL
n

3: Receive the annotated exemplar set En−1 from episode n−1. Let Cexemplar denote the
set of classes in En−1

4: Train a DNN on XL
n and En−1 using the loss function in Equation (8) of the main paper

5: Apply the trained network on XU
n to derive the pseudo-labels of these samples.

6: Split the budget k into kunlabeled and kexemplar, as detailed in Section 3.2 of the main
paper

7: Select kunlabeled
|Cepisode|

samples from each class in XU
n (given by the pseudo-labels) using the

active sampling strategy (Section 3.3 of the main paper)
8: Select kexemplar

|Cexemplar |
samples from each class in En−1 using the active sampling strategy

(Section 3.3 of the main paper)
9: Merge all the selected samples to derive the exemplar set En selected in episode n

10: Append the exemplar set En to the data in the next episode (n+1)
11: end for

XL
n XU

n En
MNIST 2,400±92 9,600±364 1,200

CIFAR 10 2,000±0 8,000±0 1,000
SVHN 2,930±1,071 11,721±5,354 2,000
COIL 114±0 456±0 100

CIFAR 100 1,000±0 4,000±0 500
Tiny ImageNet 200±0 800±0 500

Table 1: Details of the experimental setup for each dataset used in our study. The average
values over 3 random trials are reported in the table.

3 Study of the backbone network architecture

In this experiment, we studied the effect of the backbone deep neural network architecture
on the performance of ACIL. The results on the CIFAR 100 dataset using the ResNet-50 [2]
and Inception [3] architectures are depicted in Figure 1. The number of samples that had
to be manually annotated per episode are depicted in Table 2 (these values are the same as
those in Table 1 in the main paper, since only the backbone architecture is changed; they are
included here for ease of analysis). The results follow a similar trend, with ACIL showing
very similar accuracy curves as the CIL baselines, and better than the AL baselines. For the
Inception backbone, ACIL depicts the highest accuracy at the end of the last episode. The AL
baselines Random and Coreset depict impressive performance for the ResNet-50 backbone,
but their performance is much worse for the Inception backbone.

From Table 2, we once again note that our framework can result in tremendous reduction
in the human annotation effort, compared to the CIL baselines. It also necessitates fewer
annotations than the AL baselines, and produces much better accuracy results than them.
These results corroborate the robustness of ACIL to the backbone deep network architecture.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015



ACIL: ACTIVE CLASS INCREMENTAL LEARNING FOR IMAGE CLASSIFICATION 3

0 1 2 3 4
Episode Number

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

ResNet-50: CIFAR 100
Random
Coreset
BADGE
FT

iCaRL
Rainbow
GDumb
Proposed

(a) ResNet-50 Backbone
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Figure 1: Study of the backbone network architecture on the CIFAR 100 dataset. The AL
baselines (Random, Coreset, BADGE) are shown with dotted lines; the CIL baselines (Fine-
tuning, iCaRL, Rainbow, GDumb) and the proposed ACIL method are shown with solid lines.
Best viewed in color.

CIL Baselines AL Baselines Proposed
CIFAR 100 5,000±0.00 1,450±152.56 1,158±131.53

Table 2: Average (± std) number of samples that needed to be annotated per episode (includ-
ing the episodic labeled set XL

n ) by the CIL baselines (Finetuning, iCaRL, Rainbow, GDumb),
AL baselines (Random, Coreset, BADGE) and the proposed method (ACIL). These values
are the same as those in Table 1 in the main paper, since only the backbone architecture is
changed; they are included here for ease of analysis.

4 Performance with varying number of episodes

The goal of this experiment was to study the performance of ACIL with varying number of
total episodes (and hence, varying number of classes per episode). The results on the CIFAR
100 dataset with 15 and 25 episodes are depicted in Figure 2 (the results with 5 episodes
are presented in Figure 2(e) in the main paper). From Figure 2, we note that the proposed
ACIL method depicts comparable performance to the class incremental learning baselines
(Finetuning, iCaRL, Rainbow, GDumb) and outperforms the active learning baselines (Ran-
dom, Coreset, BADGE). In most of the episodes across the two experiments, the accuracy
furnished by ACIL is very close to (or better than) that of the CIL baselines, and much better
than the AL baselines. This is consistent with the results in the main paper. For both these
experiments, ACIL attains the highest accuracy after the last episode.

As before, from Table 2, we note that ACIL results in substantial savings of the human
annotation effort compared to the CIL baselines; it also requires fewer annotations than the
AL baselines. These results show the robustness of ACIL to the varying number of episodes
and the varying number of classes per episode.

5 Computation Time Analysis

In this section, we present our analysis of the computation time of all the methods studied.
The results are presented in Table 3 (for the AL baselines Random, Coreset, BADGE) and
Table 4 (for the CIL baselines (Finetuning, iCaRL, Rainbow, GDumb) and the proposed
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(a) CIFAR 100: 15 Episodes
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Figure 2: Study of varying number of total episodes on the CIFAR 100 dataset. The AL
baselines (Random, Coreset, BADGE) are shown with dotted lines; the CIL baselines (Fine-
tuning, iCaRL, Rainbow, GDumb) and the proposed ACIL method are shown with solid lines.
Best viewed in color.

method (ACIL)). The reported time includes the time taken for data selection and training
the deep neural network in a given episode (averaged over all the episodes and over 3 random
trials for each dataset). The algorithms were implemented in Python on a Linux workstation
with Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz and 64GB RAM, equipped with Dual
NVIDIA Quadro RTX 5000 GPUs with 16GB memory.

Random Coreset BADGE
MNIST 17.75±5.49 31.86±2.98 24.58±2.22

CIFAR 10 23.33±6.28 36.79±6.09 29.44±4.06
SVHN 42.59±18.09 56.13±16.43 62.13±12.16
COIL 29.14±9.62 41.79±7.66 38.69±6.51

CIFAR 100 22.61±10.67 34.70±7.16 31.33±8.52
Tiny ImageNet 18.17±4.34 26.84±4.66 35.34±8.48

Table 3: Average computation time (in seconds) per episode for the AL baselines (Random,
Coreset, BADGE). The results are averaged over all the episodes and over 3 random trials
for each dataset.

FT iCaRL Rainbow GDumb Proposed
MNIST 50.65±7.58 62.25±4.94 72.71±29.46 64.29±21.01 58.06±14.60

CIFAR 10 83.11±22.70 106.34±9.13 63.75±7.11 64.30±8.01 42.90±10.93
SVHN 108.90±46.71 132.70±13.06 101.74±44.62 100.63±26.09 71.09±30.93
COIL 47.11±17.27 54.23±8.55 77.79±27.25 73.06±23.43 65.68±18.61

CIFAR 100 58.62±17.83 47.04±9.92 54.28±11.22 50.99±12.11 36.98±10.71
Tiny ImageNet 40.42±7.81 44.62±8.09 41.06±6.14 41.94±8.76 32.82±6.91

Table 4: Average computation time (in seconds) per episode for the CIL baselines (Finetun-
ing, iCaRL, Rainbow, GDumb) and the proposed method (ACIL). The results are averaged
over all the episodes and over 3 random trials for each dataset.

We note that the CIL baselines, in general, have a marginally higher computation time
than the other methods. This is because, in each episode, the deep neural network has to be
trained on all the samples in that episode (in addition to the exemplar set from the previous
episode), which increases the computation time. For the proposed method, the deep model
has to be trained only on the labeled set XL

n and the exemplar set En−1 in a given episode n; it
therefore has lower computational overhead than the CIL methods. The same applies for the
AL baselines, which also have low computational overhead. The proposed method depicts
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slightly higher computation time than the AL baselines and comparable (and sometimes
slightly lower) computation time as the CIL baselines. This further shows the usefulness of
ACIL for real-world applications.

6 Ablation Studies
We conducted ablation studies to analyze the importance of the uncertainty and diversity
components in our ACIL framework. The results on the SVHN dataset are depicted in Figure
3. We note that the performance of ACIL is affected when either the uncertainty or the
diversity component is excluded from the framework. Excluding the diversity component
may result in querying informative, but redundant samples in the exemplar set; excluding
the uncertainty component may fail to capture the most informative samples in the exemplar
set. These results show the importance of both the components in our framework.
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Figure 3: Ablation studies on the SVHN dataset. Best viewed in color.

7 Performance Analysis using the Retention Metric
Several metrics have been proposed to quantify catastrophic forgetting in the incremental
learning literature [4, 5]. In this section, we demonstrate the efficacy of our framework to
mitigate catastrophic forgetting using the retention metric. This metric quantifies how much
information the model retains from the first episode; after training the deep model in episode
n, the retention is computed as the accuracy of the model on the test set from the first episode.
The results are presented in Figure 4 and Table 5 (this table as the same as Table 1 in the
main paper, and is included here for ease of analysis).

CIL Baselines AL Baselines Proposed
MNIST 12,000±478.12 3,359.6±483.43 2,899.6±447.38

CIFAR 10 10,000±0.00 2,800±414.04 2,417.2±344.90
SVHN 14,651.40±5,542.22 4,530±1,181.98 3,763.60±1,455.34
COIL 570±0.00 204±30.51 153.33±25.38

CIFAR 100 5,000±0.00 1,450±152.56 1,158±131.53
Tiny ImageNet 1,000±0.00 299±9.97 232.07±21.92

Table 5: Average number of samples that needed to be annotated per episode (including the
episodic labeled set XL

n ) by the CIL baselines (Finetuning, iCaRL, Rainbow, GDumb), AL
baselines (Random, Coreset, BADGE) and the proposed method (ACIL). This table as the
same as Table 1 in the main paper, and is included here for ease of analysis.
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Figure 4: Performance analysis of ACIL using the Retention metric. The AL baselines (Ran-
dom, Coreset, BADGE) are shown with dotted lines; the CIL baselines (Finetuning, iCaRL,
Rainbow, GDumb) and the proposed ACIL method are shown with solid lines. The error bars
have been omitted from the Tiny ImageNet results for better visualization. Best viewed in
color.

Retention: ACIL vs. AL baselines: From Figure 4, we note that the proposed method
consistently outperforms the AL baselines in terms of retention. The AL baselines select an
exemplar set in each episode completely from the unlabeled set of the corresponding episode,
as proposed in [1]; thus, they fail to capture the knowledge from the former episodes and
hence are not effective in mitigating catastrophic forgetting.

Retention: ACIL vs. CIL baselines: ACIL once again depicts comparable performance
as the CIL baselines. Our framework selects an exemplar set in each episode, based on an
uncertainty and diversity based criterion, and is thus able to retain useful information about
the former episodes, which enables it to mitigate catastrophic forgetting. Thus, the retention
drops at more or less the same rate as the CIL baselines, with increasing number of episodes.

Annotation effort: As noted in Table 5 (and in the main paper), ACIL results in sub-
stantial savings of annotation effort compared to the CIL baselines, as they require all the
samples to be annotated in each episode; ACIL is also marginally better than the AL base-
lines in terms of the annotation effort. These observations further corroborate the promise
and potential of ACIL for real-world class incremental learning applications.
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