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Abstract

Large-scale pre-trained vision-language models such as CLIP have shown remark-
able performance on various downstream tasks. However, such a model often learns
not only the information that is truly useful for classification, but also group attributes
that are spuriously correlated with classes, leading to misclassification of an image into
a group with the same group attributes but with the wrong class. The goal of this pa-
per is to develop a method for learning a classifier that is robust to the group attributes.
Unlike existing methods, our method is (i) knowledge-free: does not use any informa-
tion of group attributes for training, (ii) linear: a lightweight method that trains only a
single linear projection, and (iii) calibration-based: does not change the original clas-
sifier at all. The negative effects of the group attributes can be canceled by project-
ing the classification space to the orthogonal complement of the subspace spanned by
the group attributes. To achieve this, we propose Spurious Subspace Mining (SSM)
to discover the subspace from a random set of text embeddings without any supervi-
sion. Experimental results on two standard benchmark datasets, Waterbirds and CelebA,
show that the proposed method outperforms various existing methods and improves zero-
shot baseline by 35.2% in worst-group accuracy. Our code is available at https:
//github.com/LyricProduct/SSM.git

1 Introduction
Large-scale vision-language models like CLIP and ALIGN have demonstrated impressive
zero-shot performance on various downstream tasks without any fine-tuning [9, 20]. How-
ever, due to their high learning ability, these models are known to learn not only the core
features truly important for classification, but also undesirable biases contained in the train-
ing dataset [13, 16, 17, 22]. For example, vision-language models may misclassify a person’s
hair color based on his/her gender, due to the bias that blonde is more common in women.
In this paper, we refer to the attributes (e.g., gender) that are essentially unrelated to class
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Method
Knowledge

-free Linear
Calibration

-based
ERM Linear Probe [12] ✓ ✓ -
ERM Adapter [8] ✓ - -
WiSE-FT [25] ✓ ✓ -
DFR [11] ✓ ✓ -
Orth-Cali [4] - ✓ ✓
Contrastive Adapter [29] - - -
FairerCLIP [5] - - ✓
ROBOSHOT [1] ✓ ✓ ✓
Ours ✓ ✓ ✓

Table 1: Properties of Group Robust Classification Methods for Vision-Language Mod-
els. Unlike most existing methods, our method satisfies the three desirable properties of
knowledge-free, linear, and calibration-based. The only exception is ROBOSHOT [1], but
we show the significant superiority of our method in our experiments.

labels (e.g., hair color) but are spuriously correlated with them, and thus cause misclassifica-
tion, as “group attributes”. The goal of this work is to improve the robustness of pre-trained
vision-language models to the group attributes.

In addressing the challenge of group robustness, several methods have been proposed
[2, 19, 26, 27]. While some earlier methods are focused on unimodal classifiers [6, 23, 30],
recent studies have explored improving robustness for pre-trained vision-language mod-
els [4, 5, 25, 29]. For example, Chuang et al. [4] propose a calibration method that miti-
gates their negative impact by projecting the feature space to the orthogonal complement of
the subspace spanned by (the embedding vectors of) the group attributes. Zhang et al. [29]
propose to learn a nonlinear adaptor through supervised contrast learning with extended pos-
itives that include samples that are in the same class but far from the anchor, as these are
likely from different groups. FairerCLIP [5] propose to project image and text embeddings
by a pair of nonlinear kernel mappings so that the features are insensitive to given group
attributes.

In this paper, we propose a novel approach to group robust classification for improving
pre-trained vision-language models. As we summarize in Table 1, unlike most of the existing
methods, our method satisfies all of the following three desirable properties.

(i) Knowledge-Free. Most of the existing methods [4, 5, 29] assume that the group attributes
are completely known for training, which cannot always be assumed in practical scenarios.
Our approach does not require any knowledge of the group attributes for training.

(ii) Linear. Several methods learn non-linear projections for tuning [5, 29]. Compared to
these methods, our method trains only a single linear projection and is thus lightweight.

(iii) Calibration-based. While some existing methods change the original vision-language
classifiers by directly updating their parameters or appending additional adapters for tun-
ing [11, 25, 29], our method does not change the classifier at all.

One very recent method, ROBOSHOT [1], is the only exception that satisfies all the above
three properties as our method does; we show later in our experiments that our method
significantly outperforms ROBOSHOT.

To achieve these desirable properties, we propose Spurious Subspace Mining (SSM), a
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Figure 1: Method Overview. Our method consists of three steps. (1) Initial Vocabulary
Construction: acquire a set of words likely to contain group attributes. (2) Spurious Sub-
space Mining (SSM): discover a set of subspaces {S j} of the word embeddings and specify
the spurious subspace S∗ most likely to be spanned by the group attributes. (3) Calibration:
project the original class embeddings onto the orthogonal complement of the spurious sub-
space S∗ to cancel the negative impact of the group attributes.

simple and effective method for improving worst-group accuracy of pre-trained CLIP in sit-
uations where group attributes are totally unknown. The classification by CLIP is performed
based on the inner product of the image and class embeddings. If the group attributes are
known, undesirable effects of the group attributes can be canceled by linearly projecting
the embeddings to the orthogonal complement of the subspace spanned by the group at-
tributes [4]. This suggests that even if the group attributes are unknown, we do not need to
identify the group attributes themselves – we can cancel out the negative impact of the
group attributes as long as the subspace spanned by the group attributes can be esti-
mated. Based on this idea, in our SSM, we first discover a set of candidate subspaces from
a random vocabulary in an unsupervised manner through sparse subspace clustering [7, 28]
and then find the most promising subspace based on the distance to the class embeddings.
Experimental results on two standard benchmark datasets, Waterbirds and CelebA, demon-
strate that the proposed method improves worst-group accuracy in zero-shot CLIP by up to
35.2%.

The key contributions of this paper can be summarized as follows:

• We propose a knowledge-free, linear, and calibration-based approach to group robust
classification.

• We propose Spurious Subspace Mining (SSM) to efficiently find the subspace likely
to be spanned by group attributes without using any knowledge of group attributes.

• Our method outperforms the state-of-the-art group robust classification methods and
is even highly competitive with the methods assuming knowledge of group attributes
is available for training.

2 Related Work
Group robustness in pre-trained vision-language models has gained significant attention. For
example, Chuang et al. [4] proposed to mitigate the undesirable impacts caused by group at-
tributes by projecting the feature embeddings into the orthogonal compliment of the subspace
spanned by the group attributes. Contrastive Adapter [29] trains a nonlinear adapter to pull
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together distant embeddings within the same class, while to push apart nearby embeddings in
different classes in a supervised contrastive learning manner. FairerCLIP [5] introduces ad-
ditional image encoder and text encoder, and fine-tunes these two encoders. Including these
examples, most existing methods have been developed under the assumption that group at-
tributes are known for training the models (or tuning the hyperparameters), which may not
always be true in practice.

Motivated by this idea, several recent methods have been designed to avoid using any
knowledge of group attributes in training. WiSE-FT [25] takes an ensemble of the parameters
of the zero-shot and fine-tuned vision-language models to improve the group robustness.
Deep Feature Reweighting (DFR) [11] fine-tunes the top classification head by using group-
balanced data. These methods are knowledge-free but directly update the parameters of the
pre-trained models, and thus require sufficient computational resources for training.

Unlike these existing methods, our method is knowledge-free and calibration-based,
which does not change the original model at all. The only exception is ROBOSHOT [1],
which utilizes Large Language Models such as ChatGPT [18] and LLaMA [24] to identify
beneficial and harmful components for group robust classification. However, our method
outperforms ROBOSHOT by significant margins.

3 Method

The overview of the proposed method is illustrated in Fig. 1. Given a training dataset and a
pre-trained CLIP classifier, our method performs the following three major steps to obtain a
linear projection for calibrating the class embeddings of the CLIP classifier.

(1) Initial Vocabulary Construction: We obtain an initial vocabulary (i.e., a set of words)
that is likely to contain group attributes by using the training dataset. In this paper, we
consider two different approaches: Captioning-based and Retrieval-based.

(2) Spurious Subspace Mining (SSM): Under the assumption that the embeddings of
the initial vocabulary are distributed over a union of subspaces, we first discover those
subspaces in an unsupervised manner by utilizing sparse subspace clustering, and then
specify a single subspace most likely to have the group attributes (which we call spu-
rious subspace) through filtering based on point-to-subspace distances from the class
embeddings.

(3) Calibration: We find the linear projection to the orthogonal complement of the spec-
ified spurious subspace and project the original class embeddings with the found pro-
jection.

We hereafter describe the details of each step. The core of the proposed method is in (2)
SSM.

3.1 Initial Vocabulary Construction

Given a training dataset and other possible sources of vocabulary or models, we want to
obtain an initial set of V words that is likely to cover the target group attributes. While there
are several possible approaches, we use the following two approaches in our method:
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1. Captioning-based: This approach acquires the initial vocabulary by applying an ex-
ternal pre-trained image captioning model to the images in the training dataset. Fol-
lowing Kim et al. [10], we adopt ClipCap [15] as our image captioning model to obtain
the text captions of the training images, and then extract the V keywords from the cap-
tions by using YAKE [3], an unsupervised keyword extraction method. While the
B2T approach filters the obtained keywords using a proprietary score denoted as CLIP
score, our method uses all the V keywords to construct our initial vocabulary.

2. Retrieval-based: This approach uses a Wikipedia corpus to build the initial vocab-
ulary. We first extract only nouns from the corpus and then filter only those highly
correlated with the training images. More specifically, we first compute the text em-
beddings of all the nouns using the prompt “This is a picture of a [noun].” After eval-
uating the similarities (dot products) of all the pairs of image and text embeddings, we
sort the similarities in descending order and filter only the top V frequent nouns for
constructing the initial vocabulary.

3.2 Spurious Subspace Mining (SSM)

Note that our calibration is done by linearly projecting the class embeddings of the original
CLIP classifier. Hence, we do not need to directly identify the group attributes themselves
from the words in the initial vocabulary, but we only need to find the spurious subspace, i.e.,
the subspace spanned by the group attributes. To identify the spurious subspace, we perform
(i) discovery of candidate subspaces by sparse subspace clustering and (ii) identification of
the spurious subspace by Distance-based subspace filtering.

Sparse Subspace Clustering. Let us assume that the V text embeddings in the initial vo-
cabulary are distributed over a union of low-dimensional subspaces in an ambient high-
dimensional embedding space. Under this assumption, Sparse Subspace Clustering (SSC) [7,
28] can be employed to discover the set of subspaces in which V text embeddings live. Based
on the fact that a sample in a low-dimensional subspace can be efficiently reconstructed by
a linear combination of a small number of samples in the same subspace, SSC discovers
each subspace by solving a sparse L1 reconstruction problem. We apply SSC to the V text
embeddings to discover K candidate subspaces.

Distance-based Subspace Filtering. We then specify the spurious subspace from the K
subspaces. Since the group attributes are spuriously correlated with the true class labels, the
spurious subspace is likely to be close to the original class embeddings. Based on this idea,
we identify the subspace closest to the class embeddings as the spurious subspace.

Let {S j}K
j=1 be the set of K candidate subspaces obtained by SSC and {v j

k}
n
k=1 be the

orthonormal basis obtained by Gram-Schmidt’s orthogonalization for embeddings of all the
words in S j. Then the subspace-to-point distance of the subspace S j to the i-th class embed-
ding ci is computed as the length of the perpendicular line between the class embedding ci
and its point projected into the subspace ∑k(c⊤i v j

k)v
j
k. By taking its average over all the C

class embeddings {ci}C
i=1, the final spurious subspace S∗ is determined by:

S∗ = argmin
S j

1
C ∑

i
∥ci −∑

k
(cT

i v j
k)v

j
k∥2. (1)
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3.3 Calibration
We calibrate the original class embeddings by linearly projecting them onto the orthogonal
complement of the spurious subspace S∗. Given a matrix A whose columns are the embed-
dings of all the words (group attributes) in S∗, the projection matrix P0 to the orthogonal
complement of S∗ is obtained as:

P0 = I −A(AT A)−1AT . (2)

However, this simple projection matrix P0 is not sufficiently reliable, because the complete
set of group attributes cannot always be accurately identified, and the number of available
group attributes may be smaller than the number of dimensions of the original embedding
space, which makes the problem underdetermined. To improve the reliability of the projec-
tion matrix, instead of using the simple orthogonal projection P0, we follow [4] and use a set
of positive pairs Q to regularize the projection matrix. Formally, the problem is written as:

min
P

∥P−P0∥2 +
η

|Q| ∑
(i, j)∈Q

∥Pzi −Pz j∥2, (3)

where (zi,z j) is the embedding of pair (i, j) in Q and (i, j) are prompts that describe the
same class but different group attributes in S∗. η is a hyperparameter. This problem has a
closed-form solution P∗ as:

P∗ = P0

(
I +

η

|Q| ∑
(i, j)∈Q

(zi − z j)(zi − z j)
T

)−1

. (4)

The calibration is performed by applying P∗ to the original class embeddings; the calibrated
confidence values are computed in the orthogonal compliment of the subspace spanned by
potential group attributes S∗, which makes the final classification result insensitive to the
group attributes.

4 Experiments
We conduct experiments to evaluate the effectiveness of the proposed method.

Datasets. We use the following two common benchmark datasets for evaluating group robust
classification:

• CelebA [14] is a set of 162,770 images of celebrities. The task is to classify the
hair color of a celebrity as “blonde” or “not blonde”. The class label is spuriously
correlated with the celebrity’s gender, which can be either of “male” or “female”.

• Waterbirds [22] consists of 4,795 images constructed by cropping birds from images
in Caltech-UCSD Birds-200-2011 and transferring them to the background of Places.
The task is to classify images of birds as “waterbird” or “landbird”, and the class label
is spuriously correlated with the background, which is either of “land background” or
“water background.”

Metrics. Following prior work [5, 10], we use the following three major evaluation met-
rics for group robust classification. (i) WG: Both datasets have two classes and two group
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Method
CelebA Waterbirds

WG↑ Avg↑ Gap↓ WG↑ Avg↑ Gap↓
methods without group attributes knowledge
Zero-shot CLIP [20] 72.8 87.7 14.9 44.2 90.4 46.2
ERM Linear Probe [12] 28.3 94.7 66.4 65.9 97.6 31.7
ERM Adapter [8] 42.8 93.6 50.8 77.6 97.8 20.2
WiSE-FT [25] 80.0 87.4 7.4 65.9 97.6 31.7
DFR (Subsample) [11] 76.3 92.1 15.8 51.9 95.7 43.8
DFR (Upsample) [11] 83.7 91.2 7.5 65.9 96.1 30.2
B2T [10] 73.3 88.0 14.7 61.2 84.9 23.7
ROBOSHOT [1] 82.6 85.5 2.9 45.2 79.9 34.7
Ours (Captioning-based) 82.2 84.2 2.0 79.4 88.5 9.1
Ours (Retrieval-based) 85.1 85.6 0.5 69.0 91.2 22.2
methods using group attributes knowledge
Orth-Cali [4] 76.1 86.2 10.1 67.1 83.6 16.4
Contrastive Adapter [29] 84.6 90.4 5.8 86.9 96.2 9.3
FairerCLIP [5] 85.2 87.8 2.5 78.1 85.1 7.1

Table 2: Comparison with Existing Methods. The best and the second best in WG and
Gap are bolded and underlined, respectively. Compared with the existing knowledge-free
methods (which do not require knowledge of group attributes), our method outperforms all
the baselines in WG and Gap values on both datasets. Furthermore, our method is highly
competitive to the knowledge-based methods in some cases.

attributes, resulting in all the samples being divided into one of four groups (2 classes ×
2 group attributes = 4 groups). WG is the average classification accuracy within the low-
est accuracy group out of the four. Higher WG means higher group robustness, (ii) Avg:
The weighted average accuracy with the weights corresponding to the relative proportions
of each group in the training data, and (iii) Gap: The gap between WG and Avg.

Implementation Details. We use a pre-trained CLIP models with ViT-L/14 visual back-
bones [21] as the classifier. The size of the initial vocabulary V and the number of sub-
spaces K in SSC are set to V = 40,K = 2 for Waterbirds and V = 200,K = 7 for CelebA
in Captioning-based approach, and V = 60,K = 3 for Waterbirds and V = 130,K = 5 for
CelebA in Retrieval-based approach. Another hyperparameter inside SSC, i.e., the weight of
the L1 regularization term, is set to 1.0. The coefficient of the regularization term in Eq. (4),
denoted as η is set to 1000, following the default value established by Chuang et al [4]. We
do not tune this parameter.

Baselines. We compare our method with a variety of existing knowledge-free group ro-
bust classification methods (i.e., methods that assume that group attributes are unknown)
for vision-language models. Specifically, zero-shot CLIP [20], empirical risk minimization
(ERM) with linear probing [12], ERM with non-linear adapter [8], WiSE-FT [25], DFR [11],
B2T [10], and ROBOSHOT [1]. We also compare our method with three “knowledge-based”
methods, i.e., methods that assume that group attributes are known for training, namely,
Orth-Cali [4], Contrastive Adapter [29] and FairerCLIP [5].
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(a) Sensitivity to V . (b) Sensitivity to K. (c) Sensitivity to η .

Figure 2: Sensitivity to Hyperparameters. Our method is affected by several hyperparam-
eters. In particular, the number of words included in the initial vocabulary (V ), the number
of clusters preset in sparse subspace clustering (K) and the value of the coefficient η for the
regularization term in Eq. (4) have a significant impact. We also indicate the upper bounds
that the subspace filtering could achieve. The results of the sensitivity analysis indicate that
our method is somewhat sensitive to V , K and η , but it demonstrates favorable performance
within reasonable ranges.

4.1 Main Results

Table 2 shows the results on CelebA and Waterbirds. Our method outperforms all the ex-
isting knowledge-free methods in WG and Gap for both datasets. Ours improves Zero-shot
CLIP in WG by 12.3% on the CelebA and by 35.2% on Waterbirds, which proves the sig-
nificant effectiveness of our method. DFR and ERM Adapter show excellent WG accuracy
on one of the datasets but are severely degraded on the other dataset. In contrast, our method
yields satisfactory performance on both datasets, demonstrating its stability and versatility.
When ours is compared with B2T, the initial vocabulary of our method (Captioning-based)
is constructed in a similar way to B2T. However, ours significantly surpasses B2T in the WG
accuracy. ROBOSHOT, the most recent knowledge-free method having the closest property
to ours, has a distinct disadvantage of significantly lower WG values on Waterbirds. Our
approach surpasses ROBOSHOT, underscoring the superiority of our method.

Furthermore, our method is highly competitive with the existing knowledge-based meth-
ods, despite being knowledge-free. In particular, ours is superior or comparable to all the
knowledge-based methods in WG accuracy; the only exception is Contrastive Adapter on
Waterbirds. Although our method follows Orth-Cali in calibrating the embeddings by seek-
ing linear projections to a healthy subspace, our method significantly outperforms Orth-Cali
in WG on both of the two datasets. This highlights the remarkable advantage of our method.

Finally, one limitation of our method is that it shows a slight degradation from Zero-shot
CLIP in Avg. However, this is not unique to our method, and most of the methods show a
similar trend; especially the ones that show stable improvements in WG tend to exhibit lower
Avg. Exploring group robust classification methods that perform well in both WG and Avg
would be a major challenge in this field today.

4.2 Analysis

Sensitivity to Hyperparameters. Fig. 2 shows the sensitivity of our method to the hyper-
parameters, the size of the initial vocabulary V , the number of subspaces K and the value
of the coefficient η for the regularization term in Eq. (4). Our method is somewhat sensi-
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Method Distance
-based

Similarity
-based

CelebA Waterbirds
WG↑ Avg↑ Gap↓ WG↑ Avg↑ Gap↓

Ours (Captioning-based) ✓ 82.2 84.2 2.0 79.4 88.5 9.1
Ours (Captioning-based) ✓ 80.5 83.2 2.7 77.4 84.2 6.8
Ours (Retrieval-based) ✓ 85.1 85.6 0.5 69.0 91.2 22.2
Ours (Retrieval-based) ✓ 84.1 84.6 0.5 69.0 91.2 22.2

Table 3: Analysis of Method Configuration. The best and the second best in WG and Gap
are bolded and underlined, respectively. The results demonstrate that the Distance-based
subspace filtering approach is better than Similarity-based approach in WG and Avg.

Method Regular
-ization

CelebA Waterbirds
WG↑ Avg↑ Gap↓ WG↑ Avg↑ Gap↓

Ours (Captioning-based) ✓ 82.2 84.2 2.0 79.4 88.5 9.1
Ours (Captioning-based) 84.2 85.6 1.4 78.0 83.1 5.1
Ours (Retrieval-based) ✓ 85.1 85.6 0.5 69.0 91.2 22.2
Ours (Retrieval-based) 84.1 85.4 1.3 66.2 90.9 24.7

Table 4: Analysis of Regularization in Calibration. The best values in WG and Gap are
bolded. The analysis results demonstrate that in most cases, regularization leads to an im-
provement in WG values over simple projection. Furthermore, the values of Avg are also
improved by regularization in most cases.

tive to V , K and η but achieves reasonable accuracy over wide ranges of their values. The
upper bounds of performance for different V and K are also shown by dashed lines, which
are obtained by using the subspace that gives the best WG values from among the K sub-
spaces, instead of identifying it by our Distance-based subspace filtering based on Eq. (1).
Our Distance-based filtering achieves performance fairly close to the upper bounds within
reasonable ranges (120 ≤V ≤ 140 and 5 ≤ K ≤ 8), which confirms its strong effectiveness.

Analysis of Method Configuration. Besides Distance-based filtering based on Eq. (1), we
test Similarity-based filtering that finds the subspace with the highest average cosine similar-
ity between the class embeddings and embeddings of all the words in S j. Table 3 shows the
results. While the Similarity-based filtering performs reasonably well, the Distance-based
filtering is more favorable in WG accuracy, regardless of the initial vocabulary construction
method. This highlights the advantage of the proposed configuration.

Analysis of Regularization in Calibration. In sec. 3.3, we describe two types of calibra-
tion: simple projection and projection with regularization. Here, we present the experimental
results of these two types of calibration in Table 4. Calibration based on P0 calculated by Eq.
(2), is shown without regularization, while calibration based on P∗, computed by Eq. (4), is
presented with regularization. These results indicate that the introduction of regularization
improves WG and Avg in most cases.

5 Conclusions
We proposed a knowledge-free, linear, and calibration-based approach to group robust clas-
sification for pre-trained vision-language models. The core is Spurious Subspace Mining
(SSM), which finds the subspace spanned by the group attributes in an unsupervised manner
and eliminates their negative influences. Results demonstrated its remarkable superiority to
the state-of-the-art methods.
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