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A Supplemental Demo Video
Because 3D consistency and visualization are important for the quality of NeRF models, both
of which are difficult to demonstrate in a limited number of views. To truly appreciate the nu-
anced improvements and intricate details achieved through our methodology, we encourage
you to engage with our demo video. This dynamic visual presentation not only provides
a more immersive understanding of the editing results but also showcases the robustness of
our approach in handling intricate 3D scenes.

B More Implementation Details

B.1 Implementation Details and Inference Speed
Representations. We employ DVGO [11] for neural-based approaches and Plenoxels [13]
for non-neural-based approaches. We use DVGO by default. Since Plenoxels use sparse
voxel grids, we convert sparse voxel grids to dense voxel grids to facilitate editing. For
scenes from LLFF, they are trained with 192×192×128 voxels. For scenes from Mip-360,
they are trained with 2003 voxels. For other scenes, they are trained with 1603 voxels. The
original DVGO [10] can not accommodate forward-facing and unbounded inward-facing
scenes. In response, we use their enhanced work, DVGOv2 [11], which addresses these
limitations. The training resolutions for DVGOv2 is described in the paper. The training
resolution for Plenoxels is 2563.

Editing Methods. The interpolation operation for all editing methods in all scenes uses
tri-linear interpolation. In the segmentation-based selection method, we use a pre-trained
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Figure 1: Editing results on cross-scene editing. We insert the Ficus from the NeRF dataset
into the Wineholder from the NSVF dataset.

instance segmentation network from PointRend [5] which is trained on COCO [7] using
ResNet101 [3] as the backbone. Among the masks that exhibit reasonably accurate seg-
mentation, we discard the 25% of points situated farthest from the camera in experiments.
For seam carving, we choose the parallel push-relabel algorithm to solve the maximum flow
problem. Seam carving is the most time-consuming operation, 50 times of seam carving on
1603 voxels takes around 12 minutes on a 2-core Intel(R) Xeon(R) Gold 6145 machine.

B.2 Details for Equ.4

To optimize equation in Equ.4 in the main paper, we use Adam with lr= 1, betas=(0.9,0.999),
weight_decay = 0 as the optimizer. The optimization process has 500 steps, and the learning
rate is decayed by 0.1 after the 300 steps. The optimization process takes approximately 18
minutes on a single NVIDIA P100. The value of v is initialized with INTRPL(xpre,VCLR)
in the equation.

B.3 Details for Non-rigid Deformation

We demonstrate non-rigid deformation using cage-based deformation as an editing opera-
tion. The cage-based deformation is implemented based on the released code from Deforming-
NeRF [12]. The settings for cage interpolation is exactly the same as Deforming-NeRF.
Check the supplementary video for a detailed comparison.

C Radiance Fields

NeRFs[8] use Multi-Layer Perceptron (MLP) network FΘ(x,d) = (c,σ) to represent a 3D
scene, where x represent a spatial location, d represent a viewing direction, c is the emitted
color, and σ is the volume density. Each pixel in an image can be cast into a ray in world
coordinates, and we use a discrete set of samples N on ray r to render the corresponding
color Ĉ(r) and depth D̂(r) with volume rendering[4]:

Ĉ(r) =
N

∑
i=1

Ti (1− exp(−σiδi))ci, (1)

D̂(r) =
N

∑
i=1

Ti (1− exp(−σiδi))di, (2)
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Base	AddingFigure 2: Applications of Copy-and-Paste to add a base for Winehoulder from NSVF.
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(a)	Copy	and	Paste (b)	RotationFigure 3: More results of object Copy-and-Paste on the Steamtrain from NSVF dataset. We
duplicate the carriage to form a longer steam train.

where

Ti = exp

(
−

i−1

∑
j=1

σ jδ j

)
. (3)

For sample i, Ti denotes the accumulated transmittance along the ray, di is the distance
from the camera, ci is the color, σi is the density, and δi is the distance between adjacent
samples.

D Additional Experimental Results

D.1 Cross-scene Editing
We validate the ability to edit across scenes. Here, the scenes are reconstructed by Plenox-
els because the same hyper-pixel provides the same visualization result in all scenes based
on Plenoxels. In fact, representations based on neural networks, such as DVGO, can also
support cross-scene editing by training the same neural network on different scenes at the
same time [6]. In Fig. 1 we place several ficusses in the Wineholder scene. Note that this is
the result of rendering directly on the edited feature grids, rather than rendering on separate
scenes and then combining them.
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Figure 4: More seam carving results on bounded scenes from NeRF dataset.
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Figure 5: More seam carving results on unbounded 360 scenes from Mip-360 dataset. Note
that only the foreground is carved.

D.2 Common Operations

The subsequent figures present additional instances of our proposed common operations, il-
lustrating the efficacy of our approach. As shown in Fig. 2, we apply the Copy-and-Paste
technique to the Wineholder scene from NSVF, adding a base to it. Expanding on the versa-
tility of our method, Fig. 3 demonstrates the outcomes of Copy-and-Paste operations applied
to the Steamtrain scene. We selectively isolate a train carriage using Hexahedron Selec-
tion and subsequently duplicate it at the rear, effectively extending the length of the train.
Notably, the extended carriage retains the high-quality visual attributes of the original, un-
derscoring the proficiency of our approach in seamlessly replicating and extending complex
structures. These results showcase the effectiveness of our method in preserving visual de-
tails during complex manipulations.

D.3 Seam Carving

In this section, we demonstrate additional application of our seam carving algorithm to both
bounded scenes from the NeRF dataset (as shown in Fig. 4) and unbounded 360 scenes from
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Figure 6: Ablation on the size of voxel grids
using Lego from NeRF Synthetic.
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Figure 7: Ablation on the size of voxel
grids using Flower from LLFF.

the Mip-360 dataset [2] (presented in Fig. 5). Notably, because of the distinct nature of the
background and foreground components within the radiance field representation of the Mip-
360 dataset, our seam carving procedure focuses exclusively on the foreground elements.
Subsequently, to ensure visual coherence and direct the viewer’s focus to the enhanced fore-
ground, we replace the background with a plain white canvas.

E Additional Ablation Study
The ablation study focusing on the size of Voxel Grids is presented in Fig. 6 and Fig. 7.
As depicted in these figures, the visual results of seam carving maintain striking similarities
even when applied to voxel grids of different sizes. Moreover, these visualizations showcase
the robustness of our seam carving approach, revealing consistent outcomes across diverse
datasets. This uniformity in visual quality underscores the stability and effectiveness of our
method across varying grid configurations.

F Future Work
The quality of the editing results in our proposed editing system is intricately tied to the qual-
ity of the radiance field. In instances where the original radiance field quality is suboptimal,
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the selection of specific objects becomes challenging, leading to an increased likelihood of
artifacts during the editing operation. Similarly, the quality of seam carving of the radiance
fields depends on the scene itself.

Despite the flexibility of our editing system to use radiance fields based on sparse voxels,
it’s essential to note that the editing operations are conducted in dense voxels. This may
result in substantial memory consumption and lead to slow rendering time when dealing
with large scenes.

In the future, we will explore the following aspects:
• Implement more power editing methods in this system, such as patch matching [1] and

poisson editing [9].
• Extend the system to point-cloud-based and mesh-based hybrid representations.
• Introduce 3D generative models to assist in editing operations in order to repair arti-

facts caused by editing operations.
• Translate the post-edit scene to sparse voxel grids which can provide much faster ren-

dering speed and consume much smaller memories.
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