AUTHOR(S): BMVC AUTHOR GUIDELINES 1

Benchmarking and Optimizing Federated
Learning with Hardware-related Metrics

BMVC 2024 Submission # 369

1 Supplementary Materials

In this section, we provide more information to illustrate the feasibility of our work. In
summary, we provide our project code with a README file and a supplementary of our
experimental data.

1.1 Project Code

We use the FedAvg algorithm and the FedOpt algorithm as examples to prove the effective-
ness of FEDHW, and create two source codes for each algorithm, which are implemented
using Python and PyTorch [1] and ran on the desktop PC. In the source code, we simulate the
training process in federated learning by running the training process of the selected clients
sequentially. Subsequently, the trained models are aggregated to update the global model.
We present instructions for use in the README file.

1.2 Regression Models

CPU model for MNIST GPU model for MNIST Latency model for MNIST

Latency(s)

Fig. 1: Regressionn Model for MNIST

The FEDHW framework requires the utilization of client-side hardware consumption
data throughout the client training process. Consequently, we monitor all of the hardware-
related matrices on Jetson TX2 for each dataset, including the CPU energy consumption,
GPU energy consumption, and training latency. For the CIFAR-10 and ESC50 datasets, we

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Ansel, Yang, He, Gimelshein, Jain, Voznesensky, Bao, Bell, Berard, Burovski, Chauhan, Chourdia, Constable, Desmaison, DeVito, Ellison, Feng, Gong, Gschwind, Hirsh, Huang, Kalambarkar, Kirsch, Lazos, Lezcano, Liang, Liang, Lu, Luk, Maher, Pan, Puhrsch, Reso, Saroufim, Siraichi, Suk, Suo, Tillet, Wang, Wang, Wen, Zhang, Zhao, Zhou, Zou, Mathews, Chanan, Wu, and Chintala} 2024

AUTHOR(S): BMVC AUTHOR GUIDELINES

CPU model for CIFAR-10 GPU model for CIFAR-10 Latency model for CIFAR-10

Energy())
Energy())

Fig. 2: Regressionn Model for CIFAR-10

CPU model for ESC50 GPU model for ESC50 Latency model for ESC50

Energy())
Energy())
Latency(s)

Fig. 3: Regressionn Model for ESC50

CPU model for R8 GPU model for R8 Latency model for R8

1200

1000 5
800
600
400
200

()

Energ,

3
36 36
E 42 49 0 E 42 49 0

Fig. 4: Regressionn Model for R8

AUTHOR(S): BMVC AUTHOR GUIDELINES 3

employ a polynomial regression model to simulate the consumption of the client training
process. Similarly, for the MNIST and R8 datasets, we utilize a random forest regression
model. We calculate the coefficient of determination (R? score) for each model. The lowest
score is 0.89 for the GPU model of ESC50, while the other scores are above 0.96. From this
aspect, we think our models are reliable for simulating the hardware condition of the client
training.

1.3 Experimental Supplementation

Dataset FedAvg SA GA FedOpt SA GA

MNIST 6615.94 2859.18 6452.30 9181.47 2733.54 4401.54

CIFAR10 1537383.17 5224937.94 339416.31 | 588605.37 35751333 373118.82
ESC50 449330.61 310696.58 404241.07 | 413345.01 257735.83 213490.55
RS 220048.99 18566.28 15999.36 | 1265090.98 95998.97 36084.14

Table 1: Energy consumption for each dataset, unit is Joule (J)

Dataset FedAvg SA GA | FedOpt SA GA
MNIST 6.06 1.50 3.89 8.27 1.88 2.37
CIFAR10 621.61 212.73 175.77 230.91 161.71 180.36
ESC50 168.75 133.46 102.77 162.08 74.68 23.51
RS 277.48 58.25 4824 | 1589.22 75.40 65.34

Table 2: Latency for each dataset, unit is minute (min)

Tbl. 1 and Tbl. 2 present the complete results of energy consumption and latency, respec-
tively. As the configuration is identical for different methods of each dataset, we calculate
the baseline consumption by multiplying the consumption of the first round in SA by the
number of training rounds in the baseline.

When running client training and monitoring consumption data on Jetson TX2, we make
use of the Darknet framework to implement the training process of MNSIT, CIFAR-10, and
ESC50 datasets [2], while using PyTorch to implement the training process of R8 datasets.
Consequently, the consumption of the R8 dataset training process is greater than that of the
others due to the differing implementation.

References

[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, An-
jali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will
Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-
barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang,
Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark
Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xi-
aodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit

Citation
Citation
{Redmon} 2013--2016

4 AUTHOR(S): BMVC AUTHOR GUIDELINES

Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster Ma-
chine Learning Through Dynamic Python Bytecode Transformation and Graph Com-
pilation. In 29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April
2024. doi: 10.1145/3620665.3640366. URL https://pytorch.org/assets/
pytorch2-2.pdf.

[2] Joseph Redmon. Darknet: Open source neural networks in c. http://pJjreddie.
com/darknet/, 2013-2016. Accessed on: May 1, 2024.

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

