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1 Supplementary Materials

In this section, we provide more information to illustrate the feasibility of our work. In
summary, we provide our project code with a README file and a supplementary of our
experimental data.

1.1 Project Code

We use the FedAvg algorithm and the FedOpt algorithm as examples to prove the effective-
ness of FEDHW, and create two source codes for each algorithm, which are implemented
using Python and PyTorch [1] and ran on the desktop PC. In the source code, we simulate the
training process in federated learning by running the training process of the selected clients
sequentially. Subsequently, the trained models are aggregated to update the global model.
We present instructions for use in the README file.

1.2 Regression Models
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Fig. 1: Regressionn Model for MNIST

The FEDHW framework requires the utilization of client-side hardware consumption
data throughout the client training process. Consequently, we monitor all of the hardware-
related matrices on Jetson TX2 for each dataset, including the CPU energy consumption,
GPU energy consumption, and training latency. For the CIFAR-10 and ESC50 datasets, we
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Fig. 2: Regressionn Model for CIFAR-10
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Fig. 3: Regressionn Model for ESC50
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Fig. 4: Regressionn Model for R8
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employ a polynomial regression model to simulate the consumption of the client training
process. Similarly, for the MNIST and R8 datasets, we utilize a random forest regression
model. We calculate the coefficient of determination (R? score) for each model. The lowest
score is 0.89 for the GPU model of ESC50, while the other scores are above 0.96. From this
aspect, we think our models are reliable for simulating the hardware condition of the client
training.

1.3 Experimental Supplementation

Dataset FedAvg SA GA FedOpt SA GA

MNIST 6615.94 2859.18 6452.30 9181.47 2733.54 4401.54

CIFAR10 1537383.17 5224937.94  339416.31 | 588605.37 35751333  373118.82
ESC50 449330.61  310696.58  404241.07 | 413345.01  257735.83  213490.55
RS 220048.99 18566.28 15999.36 | 1265090.98  95998.97 36084.14

Table 1: Energy consumption for each dataset, unit is Joule (J)

Dataset FedAvg SA GA |  FedOpt SA GA
MNIST 6.06 1.50 3.89 8.27 1.88 2.37
CIFAR10 621.61 212.73 175.77 230.91 161.71 180.36
ESC50 168.75 133.46 102.77 162.08 74.68 23.51
RS 277.48 58.25 4824 | 1589.22 75.40 65.34

Table 2: Latency for each dataset, unit is minute (min)

Tbl. 1 and Tbl. 2 present the complete results of energy consumption and latency, respec-
tively. As the configuration is identical for different methods of each dataset, we calculate
the baseline consumption by multiplying the consumption of the first round in SA by the
number of training rounds in the baseline.

When running client training and monitoring consumption data on Jetson TX2, we make
use of the Darknet framework to implement the training process of MNSIT, CIFAR-10, and
ESC50 datasets [2], while using PyTorch to implement the training process of R8 datasets.
Consequently, the consumption of the R8 dataset training process is greater than that of the
others due to the differing implementation.
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