
PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 1

Benchmarking and Optimizing Federated
Learning with Hardware-related Metrics

Kai Pan1

pankai22s@ict.ac.cn

Yapeng Tian2

yapeng.tian@utdallas.edu

Yinhe Han†1

yinhes@ict.ac.cn

Yiming Gan†1

ganyiming@ict.ac.cn

1 Institute of Computing Technology
Chinese Academy of Science
Beijing, China

2 The University of Texas at Dallas
Texas, USA

Abstract

Federated learning (FL) serves as an effective way of preserving data privacy at net-
work training through offloading training tasks to different client hardware and aggre-
gation. Real hardware-related metrics such as latency and energy consumption directly
decide the performance and accuracy trade-off in federated learning frameworks, yet
most FL optimizations do not use real hardware metrics.

In this work, we propose to benchmark federated learning with real measured hard-
ware metrics and optimize FL frameworks through tailoring training hyper-parameters
before offloading tasks each round given hardware metrics. With two examples FedAvg
and FedOpt, we demonstrate we can significantly save training energy by up to 97.2%
and training latency by up to 96.0% while maintaining training accuracy. Source code
can be found at https://github.com/RLC-Lab/FEDHW.git.

1 Introduction
Federated learning has been proven to be an effective privacy-preserving training alterna-
tive owing to its collaborative nature among independent clients [12, 48]. Nevertheless,
the practice of offloading time and energy-consuming training tasks to resource-constrained
clients, coupled with frequent data communication, typically results in significantly longer
convergence latency and higher energy consumption in federated learning. Consequently,
optimizing the latency and energy consumption of federated learning algorithms is equally
critical while seeking to improve accuracy.

Recent efforts within the federated learning community have primarily aimed to reduce
communication costs to mitigate latency and save energy consumption, given that many
federated learning algorithms involve sharing heavy model weights or gradients [24, 34, 43].
However, we argue that a sole focus on communication optimization may not be sufficient

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

† Corresponding Author

Citation
Citation
{Kaissis, Makowski, R{ü}ckert, and Braren} 2020

Citation
Citation
{Zhang, Xie, Bai, Yu, Li, and Gao} 2021{}

Citation
Citation
{Luping, Wei, and Bo} 2019

Citation
Citation
{Sattler, Wiedemann, M{ü}ller, and Samek} 2019

Citation
Citation
{Yang, Chen, Saad, Hong, and Shikh-Bahaei} 2020

https://github.com/RLC-Lab/FEDHW.git

2 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

for two fundamental reasons. First, there is a limited body of work that examines the real
hardware performance regarding the latency and energy consumption of each process within
federated learning algorithms. Amdahl’s Law[1] suggests that exclusively concentrating
on one aspect of the entire system may result in constrained overall system improvements.
Second, attempts to reduce or compress weights shared between clients and central servers
can lead to performance degradation [42, 48].

In this work, we take the first step of benchmarking and optimizing federated learning
algorithms using real hardware performance. We systematically characterize various fed-
erated learning frameworks based on their system-wide latency and energy consumption,
leveraging real hardware performance metrics. The benchmarking methodology we propose
incorporates hardware-related metrics for all three key components of federated learning al-
gorithms: the latency and energy consumption during the training process on clients, the
model sharing between clients and the server, and the model processing on the server.

We observe that among popular federated learning algorithms, the local model training
on clients incurs the highest latency and energy consumption, primarily due to the intensive
workloads and frequent data loading from memory. The second-highest latency and energy
consumption is associated with central server processing the global model. Notably, trans-
mission between the server and clients exhibits the lowest latency and energy consumption.

Building upon our observations, we introduce an optimization framework for federated
learning that incorporates real hardware-related metrics. The framework continuously gath-
ers accuracy results from server-aggregated models and hardware-related metrics from either
real hardware or simulators. By formulating the training process as a constrained optimiza-
tion problem with discrete solution space, our framework schedules the optimal training
parameters, such as the number of clients used in each round and the training epoch, with
the aim of achieving the lowest latency or energy consumption while maintaining accuracy.

Our results indicate that the framework significantly improves latency and energy con-
sumption in popular federated learning algorithms. Our optimization framework achieves a
62.6% reduction in total latency or 56.4% energy consumption compared to state-of-the-art
federated learning algorithms, without sacrificing accuracy.

The main contributions of our paper can be summarized as follows:

• We systematically propose an end-to-end characterization of federated learning algo-
rithms with real hardware metrics such as training latency and energy consumption.
We break down the latency and energy consumption of individual components and the
results show that a significant amount of latency and energy are spent on the training
process happening on local clients and central server processing.

• We propose a framework that collects data from both the server to maintain accuracy
and real hardware to reduce latency and energy consumed in the federated learning
process. The scheduling process is formulated as a constraint optimization problem.

• We implement two instances of our optimization framework with a simulated anneal-
ing optimizer and a genetic algorithm optimizer. We significantly improve the total
latency and energy consumption of federated learning without losing any accuracy.

Citation
Citation
{Amdahl} 1967

Citation
Citation
{Xu, Du, Jin, He, and Cheng} 2020

Citation
Citation
{Zhang, Xie, Bai, Yu, Li, and Gao} 2021{}

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 3

2 Related Work

2.1 Federated Learning (FL)
Federated learning is a novel distributed training methodology designed to address privacy
concerns. The pioneering work in federated learning, FedAvg [25], trains a global model
by weighted averaging different local models trained on their respective partial datasets.
Gradient descent occurs on clients, while model aggregation occurs on the server. Building
upon FedAvg, other methods have been developed that involve sending partial weights [13,
23] or gradients [30] to the server.

Federated learning indeed presents several challenges alongside its privacy benefits. Since
no single client possesses all the data, the accuracy of many federated learning algorithms
tends to be weaker compared to centralized training approaches [7]. Moreover, due to the
frequent sharing of model weights in federated learning, there is often higher latency and
energy consumption during model training [22].

2.2 Optimizing Federated Learning
Federated learning has sparked numerous efforts aimed at enhancing its performance, with a
primary focus on improving accuracy. Various strategies have emerged to address accuracy
challenges arising from data heterogeneity, including techniques such as partial network
acceptance [23], dataset combination [40, 45, 51], and mitigation of aggregation drift [6, 7,
13, 16, 21, 49, 53].

Energy consumption stands out as another key optimization target in federated learning.
Given the additional communication costs it incurs, most approaches prioritize minimizing
energy usage by optimizing communication energy [20, 27, 38, 44, 46, 47]. Some stud-
ies delve deeper into this issue, exploring methods to conserve end-to-end training energy
through techniques like reinforcement learning or knowledge distillation [14, 18, 20, 47].

In addition to accuracy and energy considerations, training latency is a significant con-
cern in federated learning. Local model aggregation can sometimes delay training due to its
impact on the global model. Researchers have explored various approaches to address this
issue, including improving the aggregation process [41], probabilistic local model selection
[3, 35], and leveraging reinforcement learning techniques [50].

Despite extensive efforts to optimize federated learning algorithms, two fundamental
issues persist. Firstly, many optimization frameworks lack real hardware-measured data,
relying instead on assumptions. Secondly, the bottleneck of federated learning frameworks
can vary with different underlying hardware platforms, yet most optimization frameworks
remain fixed.

3 Benchmarking
Basic federated learning frameworks can be described in Equ. 1. N out of M clients are
selected every training round where D represents the dataset. Fi(x) is the loss function of the
ith local client model.

min
D

f (x) =
1
N

N

∑
i=1

Fi(x) (1)

Citation
Citation
{McMahan, Moore, Ramage, Hampson, and Arcas} 2017

Citation
Citation
{Karimireddy, Kale, Mohri, Reddi, Stich, and Suresh} 2020

Citation
Citation
{Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith} 2020{}

Citation
Citation
{Reddi, Charles, Zaheer, Garrett, Rush, Kone{£}n{unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {yglobal mathchardef accent@spacefactor spacefactor }let �egingroup let 	ypeout protect �egingroup def MessageBreak {
(Font) }let protect immediatewrite m@ne {LaTeX Font Info: on input line 3.}endgroup endgroup
elax let ignorespaces
elax accent 0 yegroup spacefactor accent@spacefactor }, Kumar, and McMahan} 2020

Citation
Citation
{Guo, Tang, and Lin} 2023

Citation
Citation
{Li, Sahu, Talwalkar, and Smith} 2020{}

Citation
Citation
{Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith} 2020{}

Citation
Citation
{Tian, Li, Shi, Wang, and Xu} 2022

Citation
Citation
{Yu, Liu, Wang, Xu, and Liu} 2023

Citation
Citation
{Zhao, Barnaghi, and Haddadi} 2022

Citation
Citation
{Gao, Fu, Li, Chen, Xu, and Xu} 2022

Citation
Citation
{Guo, Tang, and Lin} 2023

Citation
Citation
{Karimireddy, Kale, Mohri, Reddi, Stich, and Suresh} 2020

Citation
Citation
{Lai, Dai, Singapuram, Liu, Zhu, Madhyastha, and Chowdhury} 2022

Citation
Citation
{Li, He, and Song} 2021{}

Citation
Citation
{Zhang, Shen, Ding, Tao, and Duan} 2022

Citation
Citation
{Zhu, Hong, and Zhou} 2021

Citation
Citation
{Li, Shi, Hou, Li, Pan, and Han} 2021{}

Citation
Citation
{Mo and Xu} 2021

Citation
Citation
{Sun, Zhou, Niu, and GÃ¼ndÃ¼z} 2022

Citation
Citation
{Yang, Chen, Saad, Hong, and Shikh-Bahaei} 2021

Citation
Citation
{Zeng, Du, Huang, and Leung} 2020

Citation
Citation
{Zeng, Du, Huang, and Leung} 2021

Citation
Citation
{Kim and Wu} 2021

Citation
Citation
{Lee and Choi} 2022

Citation
Citation
{Li, Shi, Hou, Li, Pan, and Han} 2021{}

Citation
Citation
{Zeng, Du, Huang, and Leung} 2021

Citation
Citation
{Wu and Wang} 2022

Citation
Citation
{Chen, Luo, Dong, Li, and He} 2019

Citation
Citation
{Shi, Zhou, and Niu} 2020

Citation
Citation
{Zhang, Wang, Jiang, and Han} 2021{}

4 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

Three key hyper-parameters in federated learning frameworks will influence the accuracy
and cost trade-offs. The number of training epochs in every client E, the batch size of each
local client BS, and the fraction of clients that are used in each round F .

Unlike accuracy, benchmarking costs of federated learning algorithms are intricately tied
to hardware considerations. Different hardware setups can greatly influence total costs, such
as training energy and latency. For instance, in the popular FedAvg framework, the server
type handling model aggregation, client type managing local training, and communication
network type all impact training energy and latency. Therefore, accurate modeling of energy
and latency using real hardware or simulators is essential for precise training cost measure-
ments.

3.1 Energy Modeling

Energy consumption for server computation. In federated learning frameworks, servers
primarily handle tasks like client selection, aggregating partially-trained models, and up-
dating the global model, with less frequent involvement in actual model training. These
servers typically employ high-end CPUs and GPUs for these operations. The total energy
consumption on the server is typically the sum of energy from CPUs and GPUs, denoted as
Eserver = Ecpu

s +Egpu
s .

Energy consumption for client computation. Energy consumption for clients consists
of two parts, energy for computation and data access. Recently, most clients have been
equipped with dedicated accelerators such as the embedded GPU or Neural Processing Unit
(NPU) for local model training. The computations are mainly matrix multiplication and
accumulation (MAC). Given an example of a fully connected layer with an input X ∈ R1×c

and weights W ∈ Rc×d , the energy consumption of computing the layer is shown in Equ. 2,
where eMAC is the energy consumption of every MAC operation. Energy consumption for
client computation can be either measured using tools like power management firmware or
calculated with a cycle-accurate hardware simulator such as SCALE Sim v2 [32, 33].

Ecomp = eMAC× c×d (2)

Energy consumption for data access. When training local models, frequent data access
also consumes a significant amount of energy. The most common memory hierarchy is
usually composed of a Dynamic Random Access Memory (DRAM), a cache, and a Register
File (RF). In neural network training, inputs, weights, and activation maps are loaded from
DRAM to cache, and from cache to RF. Thus, the energy consumption for data access are
sum of three components EDRAM,ECache, and ERF . In reality, ECache and ERF are usually
taken into consideration when measuring the energy consumption of the accelerators. EDRAM
needs to be measured separately in most cases.

Energy for Communication. Federated learning frameworks generally require frequent
communication between clients and servers, leading to high communication energy. Assum-
ing clients and servers are communicating through an ideal WiFi protocol, the communi-
cation energy can be calculated using Ecomm = Pwi f i ∗ Size

BitRate [5]. where Pwi f i stands for the
power of the Wi-Fi module in the client, Size stands for the amount of data sent to the server,
and BitRate stands for transmission speed of the Wi-Fi module.

Citation
Citation
{Samajdar, Zhu, Whatmough, Mattina, and Krishna} 2018

Citation
Citation
{Samajdar, Joseph, Zhu, Whatmough, Mattina, and Krishna} 2020

Citation
Citation
{Friedman, Kogan, and Krivolapov} 2012

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 5

3.2 Latency Modeling
Training latency is another critical metric in federated learning frameworks, the lower the
better. The entire training process needs to undergo T times of “local training - commu-
nication - model aggregation” process. For each round, the latency L is determined by the
slowest client, which is calculated using L = Lserver + Lclient + Lcomm. The entire training
latency is formulated by T ×L.

4 Optimization Framework for Federated Learning with
Hardware-related Metrics

4.1 Optimization Framework
Accurate benchmarking enables us to optimize the training process of federated learning
using hardware-related metrics. To achieve this, we design an optimization framework called
FEDHW, illustrated in Fig. 1. FEDHW seamlessly integrates with any federated learning
framework, operating on the server side. It continuously gathers inputs like latency, energy
consumption, and model accuracy, and then uses this data to generate scheduling policies for
the next round of training.

Taking energy consumption optimization and FedAvg as examples, FEDHW collects the
energy consumption of every client used in the current training round and the model accuracy
after aggregating all the local models. It then generates training settings for the next round,
focusing on three key parameters: E for the number of epochs in the training round, BS
for batch size, and F for the fraction of clients used in the round. Generally, increasing
these parameters reduces the training rounds but also leads to higher energy consumption
per round. The optimization process aims to find the optimal values for E, BS, and F in each
round, as illustrated in Algo. 1.

4.2 Optimizer Design

Fig. 1: FEDHW optimization framework.

The design of the actual optimizer
plays a crucial role in determin-
ing the performance of FEDHW.
When designing the optimizer, we
prioritize two goals. Firstly, the
optimizer must incur low over-
head to avoid negatively impact-
ing overall latency or energy con-
sumption. Secondly, since the optimization process is non-convex, the optimizer must cap-
ture global optimal points instead of converging to local optima.

We propose two optimizers: FEDHW-SA, which formulates the optimization process
as a simulated annealing (SA) algorithm, and FEDHW-GA, which employs a genetic algo-
rithm (GA) approach. In Algo. 2, we describe the workings of FEDHW-SA. Our approach
leverages the inherent characteristics of the SA algorithm by treating the hyperparameters E,
BS, and F as discrete solution spaces and the energy consumption as the cost function. We
introduce random perturbations to E, BS, and F to generate new hyperparameters, which are
then evaluated for their simulated consumption. If the new consumption is lower than the

6 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

current consumption, the optimizer accepts the new hyperparameters; otherwise, acceptance
is based on a probability p. Our design tailors the probability equation to capture long-term
energy and latency behavior, as detailed in Equ. 3, where energy as an example.

Algorithm 1: FEDHW Optimization Framework
Input: Epoch E, Batch size BS, Fraction F , other FL setting parameters, Target

accuracy Acc, Number of clients NC
Output: trained global model

1 Initialize the global model ωt ;
2 while At ≤ Acc do
3 St ← randomly select Ft ×NC clients;
4 for each client m ∈ St do
5 ωSt ← ClientUpdate(Et ,BSt ,ωt ,m);
6 end
7 ωt+1← ServerUpdate(ωSt);
8 At+1← validate global model accuracy;
9 Ot ← calculate system consumption;

10 Et+1,BSt+1,Ft+1← Optimizer(Et ,BSt ,Ft ,At ,Ot);
11 end

p = e−
(Esim−Et)+(At−1−At)−Esim+δ

Tt+∑
t E (3)

The probability p takes into account both energy consumption and accuracy considera-
tions. Esim represents the simulated energy consumption using the selected training parame-
ters in the new round, while Et denotes the current energy consumption observed during the
current training round. We introduce a noise factor δ . Additionally, At−1 and At denote the
global model accuracy, where improvements in accuracy and reductions in energy consump-
tion both influence the probability of selecting a setting. Tt is the temperature parameter in
SA algorithm.

To prevent the optimizer from favoring only the best training setting for the next round
without considering long-term benefits, we incorporate a history energy consumption accu-
mulation term ∑

t E in the denominator of the probability calculation.
In FEDHW-GA, based on the basic genetic algorithm process, the binary representations

of the hyper-parameters E, BS, and F are set as the DNA sequences of the population. The
consumption function is then used as the fitness of the individuals to identify the optimal
solution in the hyper-parameters through natural iteration. Furthermore, we add the mecha-
nism of accepting new solutions with probability to ensure that the model converges during
the optimization process.

5 Experiment

5.1 Experiment Setup
FEDHW is designed to seamlessly integrate with any federated learning framework. To
demonstrate the flexibility of this approach, we utilize FEDHW with two distinct federated

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 7

Algorithm 2: FEDHW-SA Optimizer

1 SAOptimizer(E,BS,F,A,O):
2 T ← set temperature for SA;
3 while T > 1.0 do
4 Enew,BSnew,Fnew← add random perturbation to E,BS,F ;
5 Osim← ConsumptionSim(Enew,BSnew,Fnew);
6 if Osim < O then
7 E,BS,F ← Enew,BSnew,Fnew;
8 O = Osim;
9 else

10 if random(0,1) < p then
11 E,BS,F ← Enew,BSnew,Fnew;
12 end
13 end
14 T = T ×λ ;
15 end
16 return E,BS,F ;

learning frameworks, namely FedAvg and FedOpt. The entire federated learning processes
are implemented using the PyTorch framework on a desktop computer [2].

Dataset and Network We evaluate FEDHW using different datasets to demonstrate
its effectiveness across various workloads. Specifically, for image classification tasks, we
employ a 5-layer convolutional neural network on the MNIST dataset [17] and ResNet-
18 on the CIFAR-10 dataset [15]. For audio tasks, we utilize the M18 audio classification
network [4] on the ESC50 dataset [19]. Finally, for NLP tasks, we employ a two-layer LSTM
network [8] on the R8 dataset [19].

Baseline Setup We train all four models using their default settings with both FedAvg
and FedOpt [4, 25, 29, 31]. Each client’s dataset is Independent and Identically Distributed
(IID). Our results align with the reported accuracy for all four networks. Detailed training
parameters and results are provided in Tbl. 1.

Table 1: Parameter setting for each model.
Acc is the accuracy target of each model, E
means epochs, BS means batch size, F means
fraction, NC means number of clients.

Dataset Model Parameters FedAvg_Acc FedOpt_Acc

MNIST CNN (E = 20, BS = 10, F = 0.1, NC = 100) 98% 98%
CIFAR10 ResNet-18 (E = 5, BS = 64, F = 0.1, NC = 100) 90% 90%

ESC50 M18 (E = 20, BS = 10, F = 0.2, NC = 50) 68% 68%
R8 LSTM (E = 50, BS = 5, F = 0.2, NC = 50) 92% 92%

Hardware Platforms To mimic edge
clients, we utilize NVIDIA Jetson TX2 em-
bedded devices as the client platform [28],
featuring a 256-core NVIDIA Pascal GPU
architecture. For the server, we employ a
desktop equipped with an Intel i9-12900K
CPU and an NVIDIA RTX3090 GPU.
Communication between the server and clients is established through Wi-Fi.

Hardware Metric Acquisition Our method relies on real hardware metrics, specifically
latency, and energy consumption. Acquiring latency on clients is relatively straightforward;
we monitor training latency on the Jetson TX2 under different settings and introduce a noise
parameter to capture variations in latency. Energy consumption by clients is broken down
into computation energy and data access energy. To measure computation energy, we read
power numbers from special registers on the Jetson TX2 and multiply them by latency. For
data access energy on clients, we utilize DRAMSys, a flexible DRAM subsystem design

Citation
Citation
{Ansel, Yang, He, Gimelshein, Jain, Voznesensky, Bao, Bell, Berard, Burovski, Chauhan, Chourdia, Constable, Desmaison, DeVito, Ellison, Feng, Gong, Gschwind, Hirsh, Huang, Kalambarkar, Kirsch, Lazos, Lezcano, Liang, Liang, Lu, Luk, Maher, Pan, Puhrsch, Reso, Saroufim, Siraichi, Suk, Suo, Tillet, Wang, Wang, Wen, Zhang, Zhao, Zhou, Zou, Mathews, Chanan, Wu, and Chintala} 2024

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Dai, Dai, Qu, Li, and Das} 2017

Citation
Citation
{Lewis} 1997

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Lewis} 1997

Citation
Citation
{Dai, Dai, Qu, Li, and Das} 2017

Citation
Citation
{McMahan, Moore, Ramage, Hampson, and Arcas} 2017

Citation
Citation
{Qing-Yuan} 2017

Citation
Citation
{Ricevuto} 2023

Citation
Citation
{NVIDIA Jetson TX2}

8 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

space exploration framework, to simulate DRAM power during client training [36, 37]. The
energy consumption of data access is then calculated by multiplying DRAM power by client
training latency. Server energy consumption is recorded using Intel Performance Counter
Monitor (PCM) for CPU energy consumption and the pyNVML package for GPU energy
consumption [9].

5.2 Evaluation

Table 2: Energy consumption optimization.
Model FedAvg SA GA FedOpt SA GA

CNN 1× 0.43× 0.98× 1× 0.23× 0.29×
ResNet18 1× 0.34× 0.22× 1× 0.61× 0.63×
M18 1× 0.69× 0.90× 1× 0.62× 0.52×
LSTM 1× 0.08× 0.07× 1× 0.08× 0.03×

Energy consumption optimization In all
optimization scenarios reported, we ensure
that the model achieves the same accuracy
compared to the baseline over 3 runs. The
energy consumption can be saved up to
97.2%. Energy consumption results are presented in Tbl. 2. Compared to FedAvg, FEDHW
reduces energy consumption by 53.5% by tailoring E, BS, and F in each round, while for
FedOpt, the reduction is 59.2%. Specifically, FEDHW-SA achieves a 60.6% reduction in
energy consumption, while FEDHW-GA achieves a 59.2% reduction.

We observe that FEDHW-GA outperforms FEDHW-SA on larger datasets, as the GA
optimizer tends to converge to optimal settings more quickly. Conversely, FEDHW-SA
performs better on smaller datasets, as its optimization process results in more aggressive
hyperparameters which means smaller E and BS, leading to faster model aggregation and
lower energy consumption. Besides, different hyperparameter initialization settings have a
large impact on the learning process. Finding the right parameter settings is important for
energy consumption and latency in the federated learning training process.

Table 3: Latency optimization.
Model FedAvg SA GA FedOpt SA GA

CNN 1× 0.25× 0.64× 1× 0.23× 0.29×
ResNet18 1× 0.34× 0.28× 1× 0.70× 0.78×
M18 1× 0.79× 0.61× 1× 0.46× 0.15×
LSTM 1× 0.21× 0.17× 1× 0.05× 0.04×

Latency optimization The effective-
ness of FEDHW optimizer extends to la-
tency optimization, as demonstrated in
Tbl. 3. The training latency can be reduced
up to 96.0%. On average, FEDHW reduces
training latency by 79.3% compared to the FedAvg baseline and 78.0% compared to FedOpt.
Notably, FEDHW-GA shows a slight improvement over FEDHW-SA in latency optimiza-
tion, both in terms of total latency and latency per training round.

5.3 Energy Model And Latency Model Breakdown

100

80

60

40

20

0E
ne

rg
y

P
er

ce
nt

ag
e

(%
)

CNN ResNet18 M18 LSTM

 Server CPU Server GPU
 Client Comp Client DRAM
 Comm

(a) FedAvg

100

80

60

40

20

0E
ne

rg
y

P
er

ce
nt

ag
e

(%
)

CNN ResNet18 M18 LSTM

 Server CPU Server GPU
 Client Comp Client DRAM
 Comm

(b) FEDHW-SA

100

80

60

40

20

0E
ne

rg
y

P
er

ce
nt

ag
e

(%
)

CNN ResNet18 M18 LSTM

 Server CPU Server GPU
 Client Comp Client DRAM
 Comm

(c) FEDHW-GA

Fig. 2: Energy Consumption Breakdown

Citation
Citation
{Steiner, Jung, Prado, Bykov, and Wehn} 2020

Citation
Citation
{Steiner, Jung, Prado, Bykov, and Wehn} 2022

Citation
Citation
{Intel Performance Counter Monitor}

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 9

100

80

60

40

20

0La
te

nc
y

P
er

ce
nt

ag
e

(%
)

CNN ResNet18 M18 LSTM

 Server Client Comm

(a) FedAvg

100

80

60

40

20

0La
te

nc
y

P
er

ce
nt

ag
e

(%
)

CNN ResNet18 M18 LSTM

 Server Client Comm

(b) FEDHW-SA

100

80

60

40

20

0La
te

nc
y

P
er

ce
nt

ag
e

(%
)

CNN ResNet18 M18 LSTM

 Server Client Comm

(c) FEDHW-GA

Fig. 3: Latency Consumption Breakdown

We break down energy and latency results and show them in Fig. 2 and Fig. 3. As
we expect, in the FedAvg framework, the energy and latency consumed by clients take the
highest proportion. The average energy consumed by clients is 63.0% and can be up to
75.6%. Local training latency takes over 96.0% on four cases. Communication between
clients and the central server, although frequently happens, only consumes 0.07% and 0.66%
energy and latency in the process.

Thus, our optimization approach is reasonable as tailoring E,BS,F every training round
mainly saves client latency and energy. Specifically, we reduce client energy by 36.4% with
the SA optimizer and 48.7% with the GA optimizer. The local training latency is reduced
by 66.2% and 66.0%. After our optimization, the energy and latency proportion spent on the
server significantly increase as we show in Fig. 2(b) and Fig. 3(b).

From our evaluation, we find that for the first several rounds of training, the optimizer
tends to choose larger E and F as more knowledge can be learned in the early stages of
model training and facilitates model aggregation. With the accuracy of the model gradually
increasing, smaller E and F can result in better energy and latency while maintaining the final
accuracy. Also, a larger epoch number does not generally mean higher energy consumption
or latency, as a larger epoch number can enable local training with better results, which
further translates to less training rounds and reduces total energy and latency. For BS, it’s
not always the case that the smaller the batch, the more consumption-efficient it is. And we
should find the appropriate batch size for each dataset.

5.4 Ablation Study
FEDHW is ubiquitous to all kinds of hardware, as long as accurate energy and latency met-
rics are provided. We here show an ablation study where we change the underlying hardware
from GPU to a neural processing unit (NPU), change the communication protocol from WiFi
to LTE and convert the data distribution to not independent and identically distributed (Non-
IID). We validate our optimizer still works.

GPU/NPU NPU is largely used in edge devices such as smart phones [11] and smart
furniture [26, 39] for the extremely low power and high compute capability. We here use an
NPU with a basic 32× 32 systolic array and clocked at 1GHz. After synthesizing it with a
16nm technology, its power is at 1.157W and its peak throughput is 2.048 TOPS [52]. We
use a cycle-accurate simulator SCALE Sim v2 [32, 33] to simulate the cycles of NPU on
different workloads and calculate the energy consumption through E = P× cycles

f requency .
We use the FedAvg algorithm and CIFAR-10 dataset as an example, FEDHW still works

after changing GPU to NPU in the client platform. The energy consumption percentage of

Citation
Citation
{Jang, Lee, Kim, Park, Ardestani, Choi, Kim, Kim, Yu, Abdel-Aziz, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Merenda, Porcaro, and Iero} 2020

Citation
Citation
{Tan and Cao} 2021

Citation
Citation
{Zhu, Samajdar, Mattina, and Whatmough} 2018

Citation
Citation
{Samajdar, Zhu, Whatmough, Mattina, and Krishna} 2018

Citation
Citation
{Samajdar, Joseph, Zhu, Whatmough, Mattina, and Krishna} 2020

10 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

client training drops from 53.8% to 15.2% and 14.5% of the total energy consumption with
optimizers, which is similar to using the GPU on the client. The NPU only takes 1.3% energy
consumption to get the same model performance compared to GPU, which is the reason we
recommend using NPU on edge devices.

WiFi/LTE In our evaluation, we use WiFi as communication network. However, in
real-world scenarios, usually, clients do not work in an environment with a WiFi network.
We change the communication protocol to LTE and perform the evaluation. Results show
that FEDHW framework saves 71.0% energy consumption with the SA optimizer and 76.0%
energy consumption with the GA optimizer, similar to using a WiFi network.

Non-IID Non-IID datasets are better suited to real world application scenarios and tend
to take more time to train the model compared to IID datasets. We change distribution of
MNIST dataset in each client, making the variety of data in each client imcomplete but the
amount of data consistent and train the CNN model to meet the same accuracy as the IID
scenario[10]. Results show that FEDHW framework saves 74.6% energy consumption and
89.3% latency consumption compared to the FedAvg algorithm.

6 Conclusion

Federated learning has a wide range of application scenarios, especially today with the
widespread use of 5G wireless communication technology and the increasing computing
power of edge devices. It is one of the key technologies to capitalize on the data silos.
This paper provides a new benchmarking of the federated learning process from the hard-
ware perspective, and designs a framework FEDHW with two optimizers, SA and GA, to
make the federated learning process more efficient in energy-constraint or latency constraint
situations. Unlike other FL optimization frameworks, FEDHW can be applied to most FL
algorithms. We believe that when the computing power of edge devices becomes more and
more powerful, optimization frameworks that consider the hardware level can more fully
utilize the characteristics of the hardware itself, making the federated learning process more
efficient. Meanwhile, we will make more explorations on client hardware platform diversity
and data distribution diversity. We hope to have more complete realistic benchmarking of
the federated learning process from the hardware perspective in the future.

7 Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (Grant
No. 62025404)

References
[1] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference, AFIPS ’67 (Spring), page 483–485, New York, NY, USA, 1967.
Association for Computing Machinery. ISBN 9781450378956. doi: 10.1145/1465482.
1465560. URL https://doi.org/10.1145/1465482.1465560.

Citation
Citation
{Jadhav} 2018

https://doi.org/10.1145/1465482.1465560

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 11

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan,
Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej
Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason
Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias
Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet,
Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Py-
Torch 2: Faster Machine Learning Through Dynamic Python Bytecode Transforma-
tion and Graph Compilation. In 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume 2 (AS-
PLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366. URL https:
//pytorch.org/assets/pytorch2-2.pdf.

[3] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-
learning with fast convergence and efficient communication, 2019.

[4] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep convolu-
tional neural networks for raw waveforms. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 421–425. IEEE, 2017.

[5] Roy Friedman, Alex Kogan, and Yevgeny Krivolapov. On power and throughput trade-
offs of wifi and bluetooth in smartphones. IEEE Transactions on Mobile Computing,
12(7):1363–1376, 2012.

[6] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc:
Federated learning with non-iid data via local drift decoupling and correction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10112–10121, June 2022.

[7] Yongxin Guo, Xiaoying Tang, and Tao Lin. Fedbr: Improving federated learning on
heterogeneous data via local learning bias reduction. In International Conference on
Machine Learning, pages 12034–12054. PMLR, 2023.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[9] Intel Performance Counter Monitor. Intel performance counter monitor. https:
//github.com/intel/pcm, Oct 2016. Accessed on: May 1, 2024.

[10] Ashwin R Jadhav. Federated-learning-pytorch. https://github.com/
AshwinRJ/Federated-Learning-PyTorch, Nov 2018. Accessed on: May
1, 2024.

[11] Jun-Woo Jang, Sehwan Lee, Dongyoung Kim, Hyunsun Park, Ali Shafiee Ardestani,
Yeongjae Choi, Channoh Kim, Yoojin Kim, Hyeongseok Yu, Hamzah Abdel-Aziz,
et al. Sparsity-aware and re-configurable npu architecture for samsung flagship mobile
soc. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architec-
ture (ISCA), pages 15–28. IEEE, 2021.

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://github.com/intel/pcm
https://github.com/intel/pcm
https://github.com/AshwinRJ/Federated-Learning-PyTorch
https://github.com/AshwinRJ/Federated-Learning-PyTorch

12 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

[12] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren.
Secure, privacy-preserving and federated machine learning in medical imaging. Nature
Machine Intelligence, 2(6):305–311, 2020.

[13] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for fed-
erated learning. In International conference on machine learning, pages 5132–5143.
PMLR, 2020.

[14] Young Geun Kim and Carole-Jean Wu. Autofl: Enabling heterogeneity-aware energy
efficient federated learning. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO ’21, page 183–198, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450385572. doi: 10.1145/3466752.
3480129. URL https://doi.org/10.1145/3466752.3480129.

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[16] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha Mad-
hyastha, and Mosharaf Chowdhury. Fedscale: Benchmarking model and system perfor-
mance of federated learning at scale. In International conference on machine learning,
pages 11814–11827. PMLR, 2022.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[18] Sangyoon Lee and Dae-Hyun Choi. Federated reinforcement learning for energy man-
agement of multiple smart homes with distributed energy resources. IEEE Transactions
on Industrial Informatics, 18(1):488–497, 2022. doi: 10.1109/TII.2020.3035451.

[19] David Lewis. Reuters-21578 Text Categorization Collection. UCI Machine Learning
Repository, 1997. DOI: https://doi.org/10.24432/C52G6M.

[20] Liang Li, Dian Shi, Ronghui Hou, Hui Li, Miao Pan, and Zhu Han. To talk or to
work: Flexible communication compression for energy efficient federated learning over
heterogeneous mobile edge devices. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pages 1–10, 2021. doi: 10.1109/INFOCOM42981.2021.
9488839.

[21] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10713–10722, June 2021.

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):
50–60, May 2020. ISSN 1558-0792. doi: 10.1109/msp.2020.2975749. URL http:
//dx.doi.org/10.1109/MSP.2020.2975749.

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Vir-
ginia Smith. Federated optimization in heterogeneous networks. Proceedings of Ma-
chine learning and systems, 2:429–450, 2020.

https://doi.org/10.1145/3466752.3480129
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/MSP.2020.2975749

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 13

[24] WANG Luping, WANG Wei, and LI Bo. Cmfl: Mitigating communication overhead
for federated learning. In 2019 IEEE 39th international conference on distributed com-
puting systems (ICDCS), pages 954–964. IEEE, 2019.

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. Communication-efficient learning of deep networks from decentralized data. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statis-
tics, pages 1273–1282. PMLR, April 2017.

[26] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge machine learning for ai-
enabled iot devices: A review. Sensors, 20(9):2533, 2020.

[27] Xiaopeng Mo and Jie Xu. Energy-efficient federated edge learning with joint communi-
cation and computation design. Journal of Communications and Information Networks,
6(2):110–124, 2021. doi: 10.23919/JCIN.2021.9475121.

[28] NVIDIA Jetson TX2. Jetson tx2 module. https://developer.nvidia.com/
embedded/jetson-tx2. Accessed on: May 1, 2024.

[29] Jiang. Qing-Yuan. Lstm-classification-pytorch. https://github.com/
jiangqy/LSTM-Classification-pytorch?tab=readme-ov-file,
Aug 2017. Accessed on: May 1, 2024.

[30] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization.
arXiv preprint arXiv:2003.00295, 2020.

[31] Riccardo Ricevuto. Federated-learning-with-resnet-50-on-
cifar-10. https://github.com/ricevutoriccardo/
Federated-Learning-with-ResNet-50-on-CIFAR-10, Feb 2023.
Accessed on: May 1, 2024.

[32] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Kr-
ishna. Scale-sim: Systolic cnn accelerator simulator. arXiv preprint arXiv:1811.02883,
2018.

[33] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew Mattina,
and Tushar Krishna. A systematic methodology for characterizing scalability of dnn
accelerators using scale-sim. In 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 58–68. IEEE, 2020.

[34] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust
and communication-efficient federated learning from non-iid data. IEEE transactions
on neural networks and learning systems, 31(9):3400–3413, 2019.

[35] Wenqi Shi, Sheng Zhou, and Zhisheng Niu. Device scheduling with fast convergence
for wireless federated learning. In ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), pages 1–6, 2020. doi: 10.1109/ICC40277.2020.9149138.

[36] Lukas Steiner, Matthias Jung, Felipe S Prado, Kirill Bykov, and Norbert Wehn. Dram-
sys4. 0: a fast and cycle-accurate systemc/tlm-based dram simulator. In Embedded

https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://github.com/jiangqy/LSTM-Classification-pytorch?tab=readme-ov-file
https://github.com/jiangqy/LSTM-Classification-pytorch?tab=readme-ov-file
https://github.com/ricevutoriccardo/Federated-Learning-with-ResNet-50-on-CIFAR-10
https://github.com/ricevutoriccardo/Federated-Learning-with-ResNet-50-on-CIFAR-10

14 PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS

Computer Systems: Architectures, Modeling, and Simulation: 20th International Con-
ference, SAMOS 2020, Samos, Greece, July 5–9, 2020, Proceedings 20, pages 110–126.
Springer, 2020.

[37] Lukas Steiner, Matthias Jung, Felipe S Prado, Kirill Bykov, and Norbert Wehn. Dram-
sys4. 0: An open-source simulation framework for in-depth dram analyses. Interna-
tional Journal of Parallel Programming, 50(2):217–242, 2022.

[38] Yuxuan Sun, Sheng Zhou, Zhisheng Niu, and Deniz Gündüz. Dynamic scheduling for
over-the-air federated edge learning with energy constraints. IEEE Journal on Selected
Areas in Communications, 40(1):227–242, 2022. doi: 10.1109/JSAC.2021.3126078.

[39] Tianxiang Tan and Guohong Cao. Efficient execution of deep neural networks on mo-
bile devices with npu. In Proceedings of the 20th International Conference on Infor-
mation Processing in Sensor Networks (Co-Located with CPS-IoT Week 2021), pages
283–298, 2021.

[40] Chunlin Tian, Li Li, Zhan Shi, Jun Wang, and ChengZhong Xu. Harmony:
Heterogeneity-aware hierarchical management for federated learning system. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 631–
645. IEEE, 2022.

[41] Hongda Wu and Ping Wang. Node selection toward faster convergence for federated
learning on non-iid data. IEEE Transactions on Network Science and Engineering, 9
(5):3099–3111, 2022. doi: 10.1109/TNSE.2022.3146399.

[42] Jinjin Xu, Wenli Du, Yaochu Jin, Wangli He, and Ran Cheng. Ternary compression for
communication-efficient federated learning. IEEE Transactions on Neural Networks
and Learning Systems, 33(3):1162–1176, 2020.

[43] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Mohammad
Shikh-Bahaei. Energy efficient federated learning over wireless communication net-
works. IEEE Transactions on Wireless Communications, 20(3):1935–1949, 2020.

[44] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Mohammad
Shikh-Bahaei. Energy efficient federated learning over wireless communication net-
works. IEEE Transactions on Wireless Communications, 20(3):1935–1949, 2021. doi:
10.1109/TWC.2020.3037554.

[45] Qiying Yu, Yang Liu, Yimu Wang, Ke Xu, and Jingjing Liu. Multimodal federated
learning via contrastive representation ensemble. arXiv preprint arXiv:2302.08888,
2023.

[46] Qunsong Zeng, Yuqing Du, Kaibin Huang, and Kin K. Leung. Energy-efficient radio
resource allocation for federated edge learning. In 2020 IEEE International Conference
on Communications Workshops (ICC Workshops), pages 1–6, 2020. doi: 10.1109/
ICCWorkshops49005.2020.9145118.

[47] Qunsong Zeng, Yuqing Du, Kaibin Huang, and Kin K. Leung. Energy-efficient re-
source management for federated edge learning with cpu-gpu heterogeneous comput-
ing. IEEE Transactions on Wireless Communications, 20(12):7947–7962, 2021. doi:
10.1109/TWC.2021.3088910.

PAN ET AL: BENCHMARK AND OPTIMIZE FL WITH HARDWARE-RELATED METRICS 15

[48] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on
federated learning. Knowledge-Based Systems, 216:106775, 2021.

[49] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global
model via data-free knowledge distillation for non-iid federated learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10174–10183, June 2022.

[50] Peiying Zhang, Chao Wang, Chunxiao Jiang, and Zhu Han. Deep reinforcement learn-
ing assisted federated learning algorithm for data management of iiot. IEEE Transac-
tions on Industrial Informatics, 17(12):8475–8484, 2021.

[51] Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. Multimodal federated learning
on iot data. In 2022 IEEE/ACM Seventh International Conference on Internet-of-Things
Design and Implementation (IoTDI), pages 43–54. IEEE, 2022.

[52] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. Euphrates:
Algorithm-soc co-design for low-power mobile continuous vision. arXiv preprint
arXiv:1803.11232, 2018.

[53] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for
heterogeneous federated learning. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 12878–12889. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/zhu21b.html.

https://proceedings.mlr.press/v139/zhu21b.html

