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1 Implementation

1.1 The generation process of Anchor-Based Masks

Figure 1: Visualization Results on Semantic Segmentation

The generation process of Anchor-Based Masks (ABM) is illustrated in Figure 1, where
each mask map contains only one type of anchor-based mask with a certain shape and scale.
The generation of mask maps should satisfy the following two conditions:

• To transfer more structured knowledge while reducing disturbance between masks, it
is necessary to ensure that masks do not overlap with each other.

• To achieve sufficient generalization ability, the positions of anchor-based masks must
have a certain degree of randomness.
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Therefore, we initially generate a mask map within a localized region of the feature map,
corresponding to the shape of masks. Each mask within this map covers only one 1×1 pixel.
Subsequently, we expand this mask map to match the size of the feature map. For instance,
to generate a mask with a 1 : 2 aspect ratio on a feature map of dimensions H ×W ×C, we
first create a random mask denoted as M on a scale of H

2 ×W ×C. Then, we expand this
random mask by a factor of two along the H dimension to obtain M̂. If we need to increase
the mask ratio, we proportionally reduce the size of M.

1.2 Implementation Details
Settings in object detection. We selected mean Average Precision (mAP) as the main eval-
uation metric, and additionally report AP at object sizes APS, APM , APL. We conduct our
experiments on MMDetection2 framework. Each model is trained using SGD optimization
with momentum 0.9, weight decay 1e−4 and batch size 8. The learning rate is set at 0.02.

Settings in semantic segmentation. We implement our method on MMSegmentation
codebase. In training and evaluation, we use mean Intersection-over-Union (mIoU) to mea-
sure the performance of all methods. In training phase, all models are optimized by SGD
with the momentum of 0.9, the initial learning rate of 0.02, and the batch size of 16. The
input size is 512× 512. In evaluation phase, we follow general settings in, which evaluate
the performance with the original image size.

Settings in super-resolution. For evaluation, we select the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) on the Y channel of the YCbCr color
space conventionally. For data, the low resolution images used for training were obtained
by down-sampling the high-resolution images with the bicubic degradation. The ×4 scale
super-resolution models are initialized with the corresponding ×2 ones. During training,
each low resolution image is randomly cropped into 48 × 48 patches and augmented by
random horizontal and vertical flips and rotations. All the models are trained with ADAM
optimizer with β1 = 0.9, β2 = 0.99 and ε = 1e−8, with a batch size of 16. The initial learning
rate is set to 1e−4 and is decayed by a factor of 10 at every 105 iterations.

2 Datasets and Baselines

2.1 Datasets
We evaluate AMGD on three different tasks including object detection, semantic segmenta-
tion and super-resolution. For object detection, we train and evaluate AMGD on MS COCO
dataset. For semantic segmentation, we train and evaluate AMGD on Cityscapes dataset.
For super-resolution, we train AMGD on DIV2K and evaluated on four benchmark datasets:
Set5, Set14, BSD100, and Urban100.

MS COCO is a large-scale dataset commonly used for object detection. It has 118,000
training samples and 5,000 validation samples, with totally 80 categories for object detection.
In MS COCO dataset, each image contains 3.5 categories and 7.7 instance targets on average.
The images in the COCO dataset contain more intricate backgrounds, a greater number of
targets, and smaller target sizes. Less than 20% of the images contain only one category, and
only 10% contain only a single instance.

Cityscapes is a dataset for real-world semantic urban scene understanding. It has 5,000
image samples with high quality pixel-level annotations and 20,000 image samples with
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coarse annotations collected from 50 different cities. In semantic segmentation, only samples
with pixel-level annotations are used, which contain 2,975 training samples, 500 validation
samples and 1,525 testing samples, with totally 19 classes.

DIV2K is a single-image super-resolution dataset which contains 1,000 images with
different scenes and is splitted to 800 for training, 100 for validation and 100 for testing. Each
high-resolution image in DIV2K has a 2K resolution. Low resolution images are generated
from its corresponding high resolution images with magnification factors of ×2, ×3 and ×4.

Set5, Set14, BSD100 and Urban100 are all commonly used datasets for super-resolution
evaluation. Specifically, the Set5 dataset comprises five images categorised as "baby", "bird",
"butterfly", "head", and "woman". The Set14 dataset consists of fourteen images cate-
gorised as "baboon", "barbara", "bridge", "coastguard", "comic", "face", "flowers", "fore-
man", "lenna", "man", "monarch", "pepper", "ppt3", and "zebra". The Urban100 dataset con-
tains 100 images of urban scenes, featuring architectural structures. The BSDS100 dataset
includes 100 images representing a diverse range of categories, from natural scenes to spe-
cific objects, such as plants, people, and food.

2.2 Baselines
In this part, we conducted comparative experiments on three different tasks. For object
detection, we selected FKD[11], CWD[5], FGD[9] and MGD[10] as baselines; For semantic
segmentation, we selected SKD[3], IFVD[7], CWD[5], CIRKD[8], MGD[10] and MaskD[2]
as baselines; For super-resolution, we selected RKD[4], FAKD[1], CSD[6] and DUKD[12]
as baselines.

Baselines in object detection. FKD is designed to be a fast knowledge distillation
(FKD) framework that achieves the same high level of performance as vanilla KD. CWD
firstly extended the feature distillation methods into channel-wise dimension by normalizing
the activation map of each channel. FGD took the relationship among pixels into consider-
ation. It proposed focal and global distillation, which enables the student not only to focus
on the teacher’s critical pixels and channels, but also to learn the relation between pixels.
MGD is the first methods to involve masked generative paradigm into knowledge distilla-
tion tasks. And it has a great potential in building unified architecture for various distillation
tasks. MasKD represents the current state-of-the-art (SOTA) methodology within the masked
generative distillation paradigm. It introduced a learnable embedding, termed the receptive
token, to localize vital features within the feature map, thereby enhancing the performance
of traditional masked generative distillation methods.

Baselines in semantic segmentation. Beyond CWD, MGD, and MasKD, we further
introduce two distillation methods specialised for semantic segmentation, namely IFVD and
CIRKD. IFVD proposed an intra-class feature variation distillation method for semantic seg-
mentation. It forced the student model to mimic the set of similarity between the feature
on each pixel and its corresponding class-wise prototype, aiming to alleviate the difference
of feature distributions between the student model and the teacher model. While CIRKD
focused more on transferring cross image knowledge such as structured pixel-to-pixel and
pixel-to-region relations among teacher’s feature maps and student’s feature maps.

Baselines in super-resolution. RKD and FAKD are originally proposed for high-level
CV tasks, but they are compatible with SR task and applicable to CNN models. CSD is
a self-distillation method through channel-wise contrastive learning. DUKD is the current
SOTA method in super-resolution distillation. It aims to leverage the label consistency regu-
larization into knowledge distillation for super-resolution tasks.
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