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Abstract

Image analysis in the euclidean space through linear hyperspaces is well studied.
However, in the quest for more effective image representations, we turn to hyperbolic
manifolds. They provide a compelling alternative to capture complex hierarchical rela-
tionships in images with remarkably small dimensionality. To demonstrate hyperbolic
embeddings’ competence, we introduce a light-weight hyperbolic graph neural network
for image segmentation, encompassing patch-level features in a very small embedding
size. Our solution, Seg-HGNN, surpasses the current best unsupervised method by 2.5%,
4% on VOC-07, VOC-12 for localization, and by 0.8%, 1.3% on CUB-200, ECSSD for
segmentation, respectively. With less than 7.5k trainable parameters, Seg-HGNN de-
livers effective and fast (≈ 2 images/second) results on very standard GPUs like the
GTX1650. This empirical evaluation presents compelling evidence of the efficacy and
potential of hyperbolic representations for vision tasks.

1 Introduction
Image segmentation and object localization are crucial tasks with diverse applications. Ac-
curately tracing objects in images and pinpointing their spatial coordinates are essential in
fields such as robotics, medical imaging, and augmented reality.

Traditional methods, primarily in the Euclidean space, have made notable progress in
these tasks [13, 33, 38]. However, with the increasing complexity and volume of visual data,
novel approaches are needed for efficiency, scalability, and richer insights.

Images naturally have latent local hierarchies. Hyperbolic geometry, with its capacity
to capture hierarchical and tree-like structures, is particularly well-suited for complex, in-
terconnected visual data [30, 45]. Although hyperbolic operations are expensive, recent
advancements [18] have reduced compute needs to a large extent.

In the era of data-driven techniques and large-scale image analysis, our method prior-
itizes reducing computational and memory demands while being unsupervised and in the
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hyperbolic realm. With minimal dimensionality and a test-time training approach, our so-
lution is ideal for real-time applications on resource-constrained edge devices. Our work
paves the way for more efficient and accessible image analysis solutions, extending beyond
segmentation and object localization.

Through this work, we make the following contributions:

1. Hyperbolic GNNs for Image Analysis: We present Seg-HGNN, a novel framework
for image segmentation that captures latent structures within images, while being con-
strained on a hyperbolic manifold. Leveraging Hyperbolic Graph Neural Networks
(HGNNs), we show how this non-Euclidean framework improves segmentation and
object localization.

2. Richer image representations in low dimensions: We show a method of achieving
locally aware and semantically rich image representations in low embedding sizes and
benchmark their preformance.

2 Related Work
Image segmentation. It is the process of dividing an image into multiple distinct regions
or segments, each of which corresponds to a meaningful object. Deep Convolutional Neural
Networks (CNNs) [33, 39] have shown promising performance for this task and are the go-to
backbone of recent methods. The coming of encoder-decoder models [4, 14, 38] have given
way to numerous state-of-the-art variants for segmentation tasks.

While transformers [46] revolutionized language processing, Vision Transformers (ViT)
[19] were shown to be at-par with CNNs [25, 43]. However, these models need a huge
amount of training data. Caron et al. [11] trained ViTs using self-DIstillation with NO labels
(DINO), and it was seen that the generated attention maps corresponded to semantic seg-
ments in the image. Works of Melas-Kyriazi et al. [34], Shi and Malik [40] explore classical
graph theory, using deep features for localization and segmentation. Seg-HGNN takes these
ideas into the hyperbolic manifold, while being lightweight and unsupervised.

Graph Convolutional Networks. (GCNs) GCNs [31] are networks that take advantage of
structured data, and have achieved remarkable results in complex tasks like drug discovery
[53] and protein analysis [29]. DGCNet [54] utilizes a dual GCN framework to model image
feature context in both coordinate and feature spaces, and merges them back together. Hu
et al. [26] introduces a class-wise dynamic GCN module to cluster similar pixels together and
dynamically aggregate features. DeepCut [1] constructs a graph with the pair-wise affinities
between local image features and performs correlation clustering. Seg-HGNN also tries to
use this expressivenes of GCNs.

Hyperbolic spaces. Known for embedding hierarchies and tree-like structures with min-
imal distortion in low dimensions [35], they have inspired hyperbolic variants of neural
network blocks [23, 41]. Khrulkov et al. [30] shows the presence of hierarchies in image
datasets, which brought along early success in hyperbolic computer vision for few-shot,
zero-shot, and unsupervised learning [22, 37, 51]. Exploiting the intrinsic negative curvature
of hyperbolic manifolds, they emerge as a powerful framework for geometric deep learning.
However, many rely on tangent spaces for aggregation and message passing [12, 32]. Dai
et al. [18] presents a fully hyperbolic GNN by introducing a Lorentz linear transform.
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Image segmentation in hyperbolic spaces. Atigh et al. [3] formulates dataset-level hier-
archy and does pixel-level classification in the hyperbolic space in a supervised-setup. They
highlight the richness of embeddings, offering boundary information and uncertainty mea-
sures in low dimensions.

3 Preliminaries

3.1 Hyperbolic Space

A Riemannian manifold (M,g) is a smooth, connected space where each point x ∈M, has
a tangent space TxM, that behaves like it is Euclidean. Hyperbolic spaces are a specific type
of Riemannian manifold that exhibit constant negative curvature [6]. They are studied using
a few isometric models[10]. We choose the Lorentz model for its numerical stability [36].

The Lorentz model for an n-dimensional hyperbolic space is defined by the manifold L=
{x = [x0,x1, ...,xn]∈Rn+1 : ⟨x,x⟩L =−1,x0 > 0}, with the metric tensor g = diag([−1,1Tn ]).
We describe a few needed operations below.

Inner product. The Lorentz inner product is defined as

⟨x,y⟩L = xTgy =−x0y0 +
n

∑
i=1

xiyi (1)

Exponential and logarithmic maps. An exponential map expx(v), projects a vector v ∈
TxM, onto the manifold M. A logarithmic map, logx(y), is the inverse operation, which
maps a point y ∈ L to the tangent space of x, that is TxM. These functions complement each
other by satisfying logx(expx(v)) = v. For x,y ∈ L, and v ∈ TxL, they are defined as

expx(v) = cosh(||v||L)x+ sinh(||v||L)
v

||v||L
(2)

logx(v) =
arccosh(−⟨x,v⟩L)√

⟨x,v⟩2
L−1

(v+ ⟨x,v⟩Lx) (3)

where ||v||L =
√
⟨v,v⟩L.

Isometric bijections. The Poincaré ball B and the Klein model K are two other models
of hyperbolic spaces. There are bijective relations connecting all these model. For a point
x = [x0,x1, ...,xn] ∈ L, its corresponding point b = [b0,b1, ...,bn−1] ∈ B, is obtained as

pL→B(x) =
[x1, ...,xn]

x0 +1
, pB→L(b) =

[1+ ||b||2,2b]
1−||b||2

(4)

Similarly for x = [x0,x1, ...,xn] ∈ L and k = [k0,k1, ...,kn−1] ∈ K, we have

pL→K(x) =
[x1, ...,xn]

x0
, pK→L(k) =

[1,k]√
1−||k||2

(5)
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3.2 Hyperbolic Graph Convolutional Networks (GCNs)
GCNs [31] introduce the convolution operation on structured, graph data. A graph G is made
of a set of vertices V and edges E . Each node i has an associated embedding h0

i and a set of
neighbours, Ni. The convolution operation for a single layer is done with three underlying
sub-operations, namely, feature transformation, message-passing, and update. Constructing
a GCN in the hyperbolic space presents unique challenges due to the need to uphold the con-
straints of hyperbolicity across all layers. Several strategies have addressed these challenges
in notable works [12, 32]. They use eq.(3) and eq.(2) to perform transformation and message
passing in the tangent space and then project it back to the manifold.

Hyperbolic Feature Transformation. Using the feature transformation defined as a matrix-
vector multiplication in the Euclidean space, as in Kipf and Welling [31], breaks the hyper-
bolic constraint when applied to hyperbolic node representations. To avoid this, and to make
the aggregation and message-passing steps take less compute, we adopt the Lorentz linear
transform introduced in Dai et al. [18], which is defined as

y =Wx

s.t. W =

[
1 0T

0 W̃

]
,W̃

T
W̃ = I

(6)

where they show that x,y ∈ L and W̃ is constrained to be on the Stiefel manifold [24].

Hyperbolic Neighborhood Aggregation. We resort to the Einstein midpoint [45] for ag-
gregating the node representations. However, since the Einstein midpoint is defined in the
Klein model, we use the bijections defined in eq.(5).

Dai et al. [18] also tells that applying a non-linear activation on the Poincaré ball model
does not break hyperbolicity, that is, ∀b ∈ B, we get σ(b) ∈ B.

In summary, a graph layer l in the hyperbolic space would look like

k̃l
i = pL→K(W lhl−1

i )

ml
i = pK→L( ∑

j∈Ñi

wi jγ j k̃
l
j/ ∑

j∈Ñi

γ j)

hl
i = pB→L(σ(pL→B(ml

i)))

(7)

where hi ∈ L, W is the Lorentz linear transformation matrix, wi j is the weight of the edge
between nodes i and j, and Ñi = Ni ∪{i} is the neighborhood of node i. γi =

1√
1−||ki||2

is

called the Lorentz factor, and is used during the calculation of the Einstein midpoint.

3.3 Segmentation as a Graph Clustering problem
The image is first divided into patches and each one is a vertex in graph G = (V,E). We
model the task of segmentation as partitioning these patches into k disjoint clusters C1,C2, ...,Ck
such that ∪iCi =V . We use the Normalized Cuts [40] objective, and for a partition P of graph
G, the Normalized-Cut cost is given by

Ncut(P) =
cut(P)

assoc(P)
+

cut(P̄)

assoc(P̄)
(8)
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Figure 1: Method overview. We extract patch-level features from a frozen model T , flatten-
ing them to f . Edge weights are obtained from the Gram matrix(eqn.(9)) of f . We project
f to the lorentz manifold to obtain initial node embeddings. We optimize an unsupervised
graph partitioning loss to obtain k clusters.

where cut(·) is the weight of all removed edges between the partitions, assoc(·) is the total
weight of partition P , and P̄ is the other partition. In practice, the algorithm recursively
bisects the graph using the eigen vectors of the graph Laplacian matrix to form a binary
tree structure, representing a hierarchical clustering of the graph. The partitioning process
continues until a stopping criterion is met.

4 Method

4.1 Patch-level features

We use a vision transformer network [19] T , to get the patch-level features. For an image
with size m×n, we get mn

p2 patches, where p is the patch size of transformer T . Amir et al.
[2], and Melas-Kyriazi et al. [34] have shown that the key matrix from the last layer of T
exhibits superior performance in various tasks. Therefore, the image features are represented

as f ∈ R
mn
p2 ×d

, containing the key-values of embedding size d for each patch.

4.2 Obtaining Hyperbolic features

The obtained features f are in the Euclidean space and need to be exported to the lorentz
space L. Let oL := [1,0, ...,0] be called the origin in L. From the definition in eq.(1), we see
that ⟨oL, [0, f i]⟩L = 0. This allows us to think of [0, f i] as a vector in the tangent space of
oL. We can then just use the exponential map defined in eq.(2) to get representations on L.

4.3 Edge weights and Clustering loss

The edge weights are obtained from the correlation matrix of the transformer features, f fT.
An additional normalizing factor comes from the idea of normalized graph Laplacian [5, 55].
For an edge and its weight w̃i j, we divide it by the square root of the degrees of the associated
nodes. Also, as normalized-cut works with positive weights only, we threshold these values
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at 0.

wi j =
max(0, w̃i j)√

|Ñi||Ñ j|
=

max(0, w̃i j)
mn
p2

(9)

After passing through a one-layer hyperbolic GCN, we use a fully-connected layer followed
by a softmax(·), to get the probabilities of cluster assignment for each patch, as a matrix S .

F = HyperbolicGCN( fL,w)

F ′ = logoL(F)

F ′′ = FullyConnected(F ′)

S = softmax(F ′′)

(10)

We use the relaxed normalization-cut proposed in Bianchi et al. [8], to get the clustering loss.

lossN-cut =− tr(STwS)
tr(STDS)

+

∥∥∥∥ STS
||STS||F

− Ik√
k

∥∥∥∥
F

(11)

where tr(·) is the trace function, D = diag(∑ j wi j), k is the number of clusters we want to
segment into, and I is the identity matrix.

4.4 Optimization on Hyperbolic manifolds
We keep the transformer T frozen. HyperbolicGCN(·) and the FullyConnected(·) layers
contain the only trainable parameters. The operations and parameters in the latter layer are
euclidean, and can be learned by any standard gradient descent optimizer. The transforma-
tion matrix W in eq.(6) is bounded by the orthogonality contraint of submatrix W̃ . The set
of matrices with orthonormal columns form another Riemannian manifold called the Stiefel
manifold [9]. We use Riemannian stochastic gradient descent optimizer to learn W̃ .

4.5 Segmentation and Localization
The cluster assignment probabilites (S) and the cluster count (k) facilitate segmentation and
localization. For object localization, we set k as 2 and color-map the patches to assigned
clusters. We draw a bounding box around clusters with an area greater than that of 4 patches.
Following Aflalo et al. [1], the cluster which apprears on more than 2 edges is called the
background. The method used for Object Segmentation is identical to Localization, except
the inclusion of bounding boxes. For Semantic Part Segmentation, we use a top-down re-
cursive approach. After seperating the foreground patches from the image with k = 2, we
perform another round of clustering with k = 4 on the foreground patches only. This also
reduces the bias of clustering towards large clusters.

5 Experiments and Results

5.1 Training Details
We use DINO [11] trained ViT-S with a patch size of 8 as the feature extractor T . These
features are projected to the 16-dimensional Lorentz space, unless stated otherwise. The
proposed HyperbolicGCN(·) has one graph layer, with both input and output dimension size
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Method Object Localization Object Segmentation
VOC-07 VOC-12 CUB-200 DUTS ECSSD

Selective Search [44] 18.8 20.9 - - -
EdgeBoxes [56] 31.1 31.6 - - -
DINO-[CLS] [11] 45.8 46.2 - - -
LOST [42] 61.9 64.0 - - -
OneGAN [7] - - 55.5 - -
Voynov et al. [47] - - 68.3 49.8 -
Spectral Methods [34] 62.7 66.4 76.9 51.4 73.3
TokenCut [50] 68.8 72.1 - 57.6 71.2
DeepCut [1] 69.8 72.2 78.2 59.5 74.6

Seg-HGNN (ours) 72.3 76.1 79.0 57.6 75.9

Table 1: Results comparing Object Localization and Object Segmentation performance.

of 16. The FullyConnected(·) layer follows with a stack of two linear layers with hidden-
layer dimension 32 and output size of K = 2 or 4, for tasks in Section 4.5.

We use a test-time training paradigm, where patches from the image to be segmented
are clustered by the hyperbolic graph framework. Our model has atmost 7.3k parameters
on the euclidean, and 256 parameters on the stiefel manifold. This totals to 7.5k trainable
parameters, compared to 30k parameters in the current state-of-the-art [1].

With the relaxed normalization-cut loss, we train our model for 10 epochs for localization
and object segmentation, and for 100 epochs for semantic part segmentation. We use a
learning rate of 0.01 for the euclidean parameters and 0.1 for the stiefel parameters. More
implementation details and perfomance analysis are provided in the supplementary material.

5.2 Results
In this sub-section, we assess Seg-HGNN’s performance on popular benchmarks for localiza-
tion and segmentation. We compare it against unsupervised and some supervised methods.

Localization and Object Segmentation. In Table 1, we report the object localization per-
formance of our unsupervised approach on PASCAL VOC 2007 [20] and 2012 [21] datasets.
Here, we use the Correct Localization (CorLoc) metric, which is the percentage share of im-
ages where intersection-over-union with the ground truth bounding box is greater than 0.5.

Table 1 also compares Seg-HGNN’s segmentation performance on three datasets : CUB
(Caltech-UCSD Birds-200-2011) [48], a widely used dataset containing images of birds for
single object segmentation and semantic part segmentation with 5794 test images, DUTS
[49] with 5019 test images, and ECSSD [52] with 1000 images. We report our results using
mean Intersection-over-Union (mIOU).

Semantic Part Segmentation. In Table 2 we present the performance of Seg-HGNN on
the CUB dataset for semantic part segmentation. We use the Normalized Mutual Information
(NMI), and the Adjusted Rank Index (ARI) scores here. Seg-HGNN is at par with all other
unsupervised methods, including some supervised methods [16, 27, 28]. Figure 3 shows a
few samples and corresponding projections of the segmented part embeddings. These are
direct projections from the Poincaré ball model. We can see that Seg-HGNN tries to put
semantically similar parts together.
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Figure 2: A few samples comparing the quality of segmentation achieved by Seg-HGNN.
Here, the second row shows the predicted masks and the third row has the ground-truth.

Figure 3: Samples showing the quality of semantic segmentation. The first image shows
that even for multiple objects, the underlying semantic behind clustering remains intact. For
example, the heads of both the cats are clustered together in red. The projected hyperbolic
embeddings also show the quality of clustering.

Method NMI ARI

SCOPS [28] 24.4 7.1
Huang and Li [27] 26.1 13.2
Choudhury et al. [16] 43.5 19.6

DFF [17] 25.9 12.4
Amir et al. [2] 38.9 16.1
DeepCut [1] 43.9 20.2

Seg-HGNN (ours) 42.3 20.8

Table 2: Semantic Segmentation results over the CUB-200 dataset. Here, the first three
methods use ground truth masks for supervision.
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Figure 4: Low-dimensional performance of hyperbolic embeddings.

5.3 Effectiveness of low-dimensional embeddings
Through Figure 4, we present the effectiveness of hyperbolic embeddings in a low-dimensional
setting. While performance remains similar at higher dimensions, there’s a drastic drop in
Euclidean scores. Hyperbolic embeddings can hold information for sizes as low as d = 2.
The results emphasize that low dimentional hyperbolic embeddings might be a go to solution
when explainability, reduced complexity and memory footprint are of concern.

5.4 Comparing used resources
Hyperbolic operations are said to be compute-demanding. Since even with d = 2 we get
reliable perfomance, Table 3 suggests faster inference speeds and low resource-usage.

Model V-RAM (GB) ↓ Infer Rate (img/sec) ↑

d = 2 4 8 16 2 4 8 16

Seg-HGNN 1.2 1.3 1.5 1.83 2.1 1.9 1.85 1.54
DeepCut 1.81 (d = 64) 1.44 (d = 64)

Table 3: Resource usage and inference rates on ECSSD, including pre and post-processing.

5.5 Effect of adding Seg-HGNN and Conclusion
We benchmark the performance of a few unsupervised methods, both with and without Seg-
HGNN. Table 4 shows that adding Seg-HGNN improves scores for both tasks. We conclude
that Seg-HGNN and hyperbolic manifolds effectively represent complex hierarchical struc-
tures even in minimal dimensions.

Method VOC-07 ECSSD

MoCo-V3 [15] without Seg-HGNN 46.19 36.7
with Seg-HGNN 61.2 53.3

DINO [11] without Seg-HGNN 45.8 51.2
with Seg-HGNN 72.3 75.9

Table 4: The effect of adding Seg-HGNN on top of pretrained methods.
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