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ivan.sabolic@fer.hr

Ivan Grubišić
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A Normalizing flows

A normalizing flow is a bijective mapping gθθθ NF that transforms the input zzz with a complex
distribution into an output uuu with a fixed simple distribution, usually an isotropic Gaussian
with a zero mean and unit variance: gθθθ NF(zzz) = uuu ∼N (0d ,Id), where d is the dimension of
the input. The density of the inputs can be computed by applying change of variables:

p(zzz) = p(uuu)
∣∣∣∣det

∂uuu
∂ zzz

∣∣∣∣ (A.1)

A normalizing flow is usually implemented as a sequence of simpler invertible mappings
with learnable parameters, such as affine coupling layers [7].

B Implementation details

B.1 Datasets and models

We show the details for each dataset used in our evaluations in Table B.1. Following pre-
vious work [8, 11], We use subsets of 30 classes from ImageNet [6] and VGGFace2 [1],
primarily to address computational time and cost constraints. We have chosen the subsets
randomly because the subsets of previous works are not publicly available. We call the
subsets ImageNet-30 and VggFace2-30. The classes selected for ImageNet-30 are: acorn,
airliner, ambulance, american alligator banjo, barn, bikini, digital clock, dragonfly, dumb-
bell, forklift, goblet, grand piano, hotdog, hourglass, manhole cover, mosque, nail, parking
meter, pillow, revolver, rotary dial telephone, schooner, snowmobile, soccer ball, stringray,
strawberry, tank, toaster, volcano. The classes selected for VGGFace2-30 are: 557, 788,
1514, 2162, 2467, 3334, 3676, 4908, 5491, 5863, 6248, 7138, 7305, 7620, 8316 591, 1480,
2035, 2251, 2933, 3416, 4215, 5318, 5640, 5891, 7084, 7222, 7489, 8144, 8568.
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Dataset Input size # Classes # Training # Testing Modelimages images

CIFAR-10 3 × 32 × 32 10 50000 10000 ResNet-18
ImageNet-30 3 × 224 × 224 30 39000 3000 ResNet-18
VGGFace2-30 3 × 224 × 224 30 9000 2250 DenseNet-121

Table B.1: Summary of datasets and models used in our experiments.

B.2 Standard supervised training setups

Our experiments involve the ResNet-18 backbone [10] with the standard stem block depend-
ing on the dataset. For ImageNet, the stem block consists of a 7× 7 convolution with stride
2 followed by batchnorm, ReLU and 3× 3 average pooling with stride 2. For CIFAR-10, the
stem block is a single 3× 3 convolution with stride 1.

We perform supervised training on CIFAR-10 [13] for 200 epochs with a batch size of
128. We use SGD with momentum set to 0.9 and weight decay to 0.0005. Following [8,
11], the initial learning rate is 0.1, and we divide it by 10 at epochs 100 and 150. We
perform random resized crop, random horizontal flip as data augmentations and standardize
the inputs [11].

On ImageNet-30 and VGGFace2-30 we train for 90 epochs. All images are resized to
224× 224 before the trigger injection. The other hyperparameters are same as in CIFAR-10
training.

C Attack configurations

BadNets To perform BadNets attacks, we follow the configurations of [8, 9, 11]. On
CIFAR-10, the trigger pattern is a 2× 2 square in the upper left corner of the image. On
ImageNet-30 and VGGFace2-30, we opt for a 32× 32 Apple logo.

Blend Following [5, 8, 11], we use "Hello Kitty" pattern on CIFAR-10 and random noise
patterns on ImageNet-30 and VGGFace2-30. Blending ratio on all datasets is set to 0.1.

WaNet Although WaNet [17] belongs to the training time attacks, we follow [8, 11] to use
the warping-based operation to directly generate the trigger pattern. The operation hyperpa-
rameters are the same as in [8].

Label Consistent Following [19], we use projected gradient descent [16] to generate the
adversarial perturbations within L∞ ball. Maximum magnitude η is set to 16, step size to 1.5
and perturbation steps to 30. Trigger pattern is 3× 3 grid pattern in each corner of the image

ISSBA We replicate the ISSBA [15] attack by training the encoder model for 20 epochs
with secret size 20. We then leverage the pre-trained encoder to generate the poisoned
dataset.
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Adap-Patch and Adap-Blend To replicate these attacks, we search for the combination
of cover and poison rate giving the best ASR, while keeping in mind that those rates should
not be too high for attack to remain stealthy, as stated in [18]. We set poisoning and cover
rate both to 0.01. Trigger patterns used are the same as in [18].

D Defense configurations

NAD We implement NAD based on the open source code of the BackdoorBox library1. We
find it [14] to be sensitive to its hyperparameter β . Therefore, for every attack, we perform a
hyperparameter search for the best results among values β ∈ {500,1000,1500,2000,5000}.

ABL To reproduce ABL experiments, we refer to BackdoorBox. We first poison the model
for 20 epochs, followed by backdoor isolation which takes 70 epochs. Lastly, we unlearn the
backdoor for 5 epochs on CIFAR-10 and ImageNet-30, and for 20 epochs on VGGFace2-30.
We search for the value of the hyperparameter γ ∈ {0,0.2,0.4} that gives the best ASR.

DBD In order to reproduce DBD [11], we use the official implementation2. We follow all
configurations as described in [11].

ASD By following the official implementation3, we reproduce the ASD [8]. We follow all
defense configurations from [8]

E GSSD

The self-supervised and the supervised stage of GSSD involve the ResNet-18 backbone [10]
described in Appendix B.

We perform SimCLR [4] pre-training for 100 epochs on batches of 256 images. We
use Adam with (β1,β2) = (0.9,0.99), and a fixed learning rate of 3 · 10−4. We perform
random resized crop, random horizontal flip, color jitter, grayscale as data augmentations
and standardize the inputs [4]. The code implementation4 of SimCLR that we use omits
random Gaussian blurring compared to the original paper.

Our per-class normalizing flows consist of two steps with actnorm [12] and affine cou-
pling [7]. Each coupling module computes the affine parameters with a pair of ReLU acti-
vated fully-connected layers. We train each normalizing flow for 50 epochs with batch size
16, use Adam optimizer with (β1,β2) = (0.9,0.99) and a fixed learning rate δ = 10−3.

After the standard supervised trainingwith hyperparameters described in Appendix B,
we fine-tune the classifier for 2 epochs using the learning rate of 10−4. We set βND = 0.6,
βD = 0.05, λ = 0.75, αC = 0.3 and αP = 0.15 according to early validation experiments.
The defense against disruptive attack uses αC = 0.15. Appendix K provides extensive hy-
perparameter validations.

1https://github.com/THUYimingLi/BackdoorBox
2https://github.com/SCLBD/DBD
3https://github.com/KuofengGao/ASD
4https://github.com/Spijkervet/SimCLR
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F Attack impact on self-supervised embeddings
Figure F.1 shows how adding triggers into images affects self-supervised embeddings in non-
disruptive attacks. Concretely, we measure the L2 distance between embeddings of the same
image before and after trigger addition. We compare these distances with those between
examples of the same label, as well as with distances between examples of different labels.
We conclude that the impact of the trigger injection is minimal. The poisoned examples will
be much more similar to clean examples from their original class than to the target class
examples.

Figure F.1: Histogram of L2 distances between self-supervised embeddings for BadNets
attack on CIFAR-10 dataset. Distances between clean and poisoned versions of the same
example are colored in brown. Blue denotes distances between samples of the same classes
(intra-class), while green marks distances between samples from different classes (inter-
class).

G Time complexity
Table G.1 compares the runtimes of different defenses. We utilize the official implementa-
tions provided by the authors (see Appendix D) to measure the runtime of each method. The
experiments on CIFAR-10 were conducted on Nvidia RTX 2080 Ti, and the experiments on
ImageNet-30 were conducted on Nvidia RTX A4500 due to greater memory requirements.
Note that we were unable to achieve full GPU utilization on our machines. Therefore, we
also provide the measurements from [8], that had better GPU utilization.

ABL requires the least amount of time on both CIFAR-10 and ImageNet-30 datasets.
However, it is quite sensitive to its hyperparameter, which varies inconsistently across dif-
ferent datasets. Further adjustment of this hyperparameter adds complexity to the defense
process, resulting in increased time requirements. Our method is more efficient than DBD
and ASD. The computationally most expensive part of DBD and ASD is the mixmatch semi-
supervised stage, while in case of GSSD it is the self-supervised stage. By relabeling sus-
picious examples and employing standard supervised learning, our method avoids the time
consuming semi-supervised learning. In case of GSSD, most of the time is spent on self-
supervised training, as shown in the breakdown over stages in Table G.2. The self-supervised
training stage might be replaced with an off-the-shelf feature extractor, as shown in Table 3.
However, the assumption of obtaining a clean pre-trained feature extractor, such as CLIP,
may face challenges, as recent research shows how similar models can be backdoored [2, 3].
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SABOLIĆ, GRUBIŠIĆ, ŠEGVIĆ: GENERATIVE SELF-SUPERVISED BACKDOOR DEFENSE 5

GPU Dataset ABL DBD ASD GSSD

RTX 2080 Ti CIFAR-10 4825 19282 13202 6013
RTX 2080 Ti [8] CIFAR-10 3200 *45850 9990 –
RTX A4500 ImageNet-30 4154 37007 22557 16217
Tesla V100 [8] ImageNet-30 3855 *223100 27030 –

Table G.1: Runtime [s] of defenses against the BadNets attack. Rows with reference to [8]
correspond to measurements copied from [8]. The symbol * denotes that the measurements
from [8] used 1000 as the number of epochs for self-supervised training, while we reduced
it to 100 based on the observation of no substantial effect on the performance.

Dataset SimCLR Normalizing flows Retraining Total

CIFAR-10 2172 896 2945 6013
ImageNet-30 11940 946 3331 16217

Table G.2: Runtime [s] of each component of GSSD. SimCLR denotes self-supervised train-
ing in the first stage of GSSD. Normalizing flows denote the training of and filtering and
relabeling with the generative classifier. Retraining marks training on the filtered subset and
fine-tuning on the relabeled subset.

H Resistance to low poisoning rates
We have observed that GSSD fails to detect the target class in the case of an extremely low
poisoning rate, such as 0.1%. BadNets is the only attack that succeeds in such a scenario. We
have noticed that other state-of-the-art methods also struggle against that attack, as shown in
Table H.1.

Defense → No defense ABL DBD ASD GSSD

Poisoning rate ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

0.1% 95.2 99.06 84.3 99.51 91.5 2.45 93.1 93.43 95.2 99.06

Table H.1: Performance of state-of-the-art defenses against BadNets attack with 0.1% poi-
soning rate on CIFAR-10.

I Resistance to potential adaptive attacks
Adaptive attacks are crafted by attackers who have knowledge of potential defense methods.
In our case, the attacker could try to fool a surrogate self-supervised model by increasing
similarity between poisoned samples and the clean samples of the target class. One way
to achieve this is to search for a trigger that minimizes some distance d between poisoned
samples and clean samples of the target class.

Let tτττ : X →X denote the triggering function that applies a blending trigger pattern
τττ ∈ X = [0,1]H×W×3 with weight b ∈ (0,1) to an example xxx as follows:

tτττ(xxx) = (1− b)xxx+ bτττ . (I.1)

We optimize the trigger pattern τττ on a surrogate self-supervised model trained on images
from the benign dataset D. Let Dp ⊂D be the subset of training examples to be triggered.
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The clean examples DC =D \Dp are the rest of the dataset. Formally, we aim to solve

min
τττ

∑
(xxx,y)∈Dp

d(z̄zzyT , fθθθ F(tτττ(xxx))), (I.2)

where z̄zzyT ≜ IE(xxx,y)∈DC,y=yT fθθθ F(xxx) is the average embedding of clean samples of the target
class. We set b = 0.2 and set the poisoning rate to 10%.

To maximize the influence of the trigger τττ in the latent space, we size it to be the same
as that of the original image. This makes the attack less stealthy, but our goal is to test the
resilience of our defense against the most potent attack possible. In this attack scenario, we
assume the attacker has access to the benign training dataset, self-supervised model structure
and optimization objective.

We perform experiments on CIFAR-10 using the Adam optimizer with learning rate set
to 0.1. The attack results in a successful backdoor with ACC = 94.7% and ASR = 100%.
However, GSSD successfully detects the poisoned samples and erases the backdoor during
retraining process. The final result is ACC = 93.6%, ASR = 0.27%. It classifies this attack
as disruptive and filters out all poisoned samples. We hypothesise that the attacker faces a
compromise: a stronger trigger is more likely to to minimize the distance in Eq. (I.2), but
also more likely to make examples with triggers more similar to each other, thereby raising
the risk of the poisoning being disruptive.

J Generative vs Discriminative classifier
To validate the choice of the generative classifier in our method, we plug in the discriminative
classifier in its place. We use a simple model consisting of two linear transformations with
ReLU in between and optimize it using standard cross entropy loss. The discriminative
classifier fails at detecting target classes using Equations (2) and (4). For the rest of this
ablation, we assume that the defender knows the target class yT. We utilize the predictions
from a discriminative classifier to compute σ from Equation (6), which is then employed to
perform filtering and relabeling. Table J.1 compares the performance of a model trained on
such data against the original version of our method with the generative classifier. Despite
the slight reduction in accuracy on clean data when using the discriminative classifier in our
method, it still produces satisfactory results.

Attack → BadNets Blend WaNet

Classifier ↓ ACC ASR ACC ASR ACC ASR

Discriminative 90.5 0.05 91.7 0.29 92.9 1.30
Generative 91.7 0.23 92.2 0.77 93.7 1.35

Table J.1: Comparison of different classifiers on CIFAR-10.

K Hyperparameter validation
We provide validation for hyperparameters αC and αP in Table K.1, for βD in Tables K.2,
K.3, for λ in K.4, K.5, and for βND in K.6, K.7.
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Attack → BadNets Blend Wanet Adap-Blend

αC ↓ αP ↓ ACC ASR ACC ASR ACC ASR ACC ASR

0.15 0.15 92.2 0.20 91.4 0.75 92.5 0.60 90.0 0.00
0.3 0.3 93.0 0.34 93.0 0.80 93.4 0.90 89.2 0.00
0.4 0.4 92.9 0.30 92.3 0.75 92.5 0.47 87.4 0.00
0.4 0.15 92.6 0.40 91.1 1.10 93.3 1.20 91.5 0.02
0.3 0.15 92.4 0.20 92.6 0.84 93.7 1.20 91.3 0.01
0.4 0.3 93.4 0.51 92.5 1.03 93.8 1.20 89.1 0.00

Table K.1: Results of our defense for BadNets attack on CIFAR-10 for different values of
hyperparameters αC and αP.

βD → 0.01 0.05 0.10 0.20Poisoning rate ↓
0.65% airplane airplane none none
2.50% airplane airplane airplane airplane

Table K.2: Results of target classes detection for LC attack on CIFAR-10 dataset for different
values of hyperparameter βD. The true target class is airplane. λ is fixed as 0.75.

βD → 0.01 0.05 0.10 0.20Poisoning rate ↓
10% acorn acorn acorn acorn
15% acorn acorn acorn acorn
20% acorn acorn acorn acorn

Table K.3: Results of target classes detection for BadNets attack on ImageNet-30 for differ-
ent values of hyperparameter βD. The true target class is acorn. λ is fixed as 0.75.

βD → 0.65 0.75 0.85 0.95Poisoning rate ↓
0.65% airplane airplane airplane airplane
2.50% airplane airplane airplane airplane

Table K.4: Results of target classes detection for LC attack on CIFAR-10 dataset for different
values of hyperparameter λ . The true target class is airplane. βD is fixed as 0.05

βD → 0.65 0.75 0.85 0.95Poisoning rate ↓
10% acorn acorn acorn, mosque acorn, mosque
15% acorn acorn acorn acorn
20% acorn acorn acorn acorn

Table K.5: Results of target classes detection for BadNets attack on ImageNet-30 for differ-
ent values of hyperparameter λ . The true target class is acorn. βD is fixed as 0.05.
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βD → 0.4 0.5 0.6 0.7 0.8Poisoning rate ↓
1% airplane airplane airplane airplane airplane
5% airplane airplane airplane airplane airplane

10% airplane airplane airplane airplane airplane
20% airplane airplane airplane airplane airplane

Table K.6: Results of target classes detection for BadNets attack on CIFAR-10 dataset for
different values of hyperparameter βND. The true target class is airplane.

βD → 0.65 0.75 0.85 0.95Poisoning rate ↓
1% acorn acorn acorn acorn
5% acorn acorn acorn acorn

Table K.7: Results of target classes detection for BadNets attack on ImageNet-30 for differ-
ent values of hyperparameter βD. The true target class is acorn. λ is fixed as 0.75.

L Relabeling accuracies
Table L.1 evaluates our generative classifier against the original labels, as they were prior
to poisoning. We observe the lowest accuracy in cases of Adap-Patch and Adap-Blend at-
tacks. We attribute this discrepancy to the tendency of these attacks to enhance the similarity
between the clean samples of the target class and poisoned samples within the latent space.

BadNets Blend WaNet ISSBA Adap-P Adap-B

Relabeling accuracy 92.6 88.3 90.3 92.6 42.1 36.5
Table L.1: Relabeling accuracies [%] of non-disruptive attacks on CIFAR-10. As stated, the
relabeling occurs only if the attack is classified as non-disruptive.
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