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1 Data Preprocessing
We used four datasets in this paper to validate the effectiveness of our approach, ISBI [2],
VNC [8], DRIVE [14], and CHASE [6]. Electron microscope images (ISBI and VNC) are
grayscale images and fundus images (DRIVE and CHASE) are RGB three-channel color
images. Therefore we grayscaled the fundus images. Since the regions of interest of electron
microscope images and fundus images are different, the region of interest of electron micro-
scope images is the set of all pixels, and the region of interest of fundus images is the set of
pixels inside the eyeball. To prevent incomplete global information and reduce discrepancies
caused by patching, we rescaled all images to 512× 512 using cubic interpolation. Simul-
taneously, labels were resized to the corresponding 512× 512 size using nearest neighbor
interpolation. Our enhanced images are obtained by summing the feature maps obtained by
Jerman [10] and Frangi [5] after black and white conversion with the original image.

1.1 Comparison Experiments

We validate the effectiveness of our approach with a comprehensive comparison of nine un-
supervised domain adaptation methods on four datasets. These nine methods are DANN [7],
UMDA-SNA [11], DCDA [12], SAM-UDA [4], ADANet [16], FFO [15], SFUDA [1],
MIC [9], and LA-UDA [3]. Figure 1 demonstrates the complete comparison results. Ta-
ble 1 quantifies the metrics differences between the different UDA methods, showing that
the segmentation results of our method are more accurate. Our method is able to obtain more
continuous and more complete segmentation results in fundus images, which is more obvi-
ous at the ends of blood vessels. Our approach yields segmentation outcomes with reduced
noise in electron microscopy images. Furthermore, it achieves more precise segmentation
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Figure 1: Visualization examples of comparative experiments. I: ISBI, V: VNC, C: CHASE,
D: DRIVE.
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Figure 2: Visualization examples of ablation studies. I: ISBI, V: VNC, C: CHASE, D:
DRIVE.

results for the thicker regions of the tubular structure. The results of the comparison experi-
ments demonstrate that UDA methods proposed for a single anatomical source do not work
well in a multi-anatomical source setting. We believe that this is due to the variability in
the data characteristics of the tubular structures of different anatomical sources and the great
variability in the background noise of different anatomical sources. In addition, the fact that
these methods do not provide explicit feature constraints for the segmentation targets is also
a reason for their failure.
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Table 1: Comparison experiments. I: ISBI, V: VNC, C: CHASE, D: DRIVE.

Method I→C I→D V→C V→D C→I C→V D→I D→V
U-Net(No adaptation) [13] 7.79% 2.88% 16.56% 22.84% 36.13% 20.13% 36.79% 27.76%

U-Net(Supervised) [13] 80.59% 80.87% 80.59% 80.87% 78.73% 88.30% 78.73% 88.30%
DANN [7] 12.34% 13.75% 13.43% 19.27% 57.88% 62.81% 47.88% 44.84%

UMDA-SNA [11] 15.87% 10.85% 13.75% 21.35% 42.36% 32.24% 37.70% 19.57%
DCDA [12] 15.92% 14.17% 16.33% 20.16% 61.23% 63.06% 46.59% 45.28%

SAM-UDA [4] 14.10% 10.78% 13.92% 16.89% 43.43% 39.95% 40.35% 22.83%
ADANet [16] 11.43% 9.69% 14.31% 12.49% 65.40% 36.48% 41.69% 23.56%

FFO [15] 19.73% 18.13% 14.80% 20.04% 48.57% 36.67% 46.90% 35.33%
SFUDA [1] 13.79% 26.40% 14.80% 26.43% 54.44% 64.75% 54.15% 59.51%

MIC [9] 15.42% 10.86% 14.85% 15.13% 61.85% 68.74% 59.14% 64.57%
LA-UDA [3] 36.76% 39.70% 24.67% 26.34% 56.19% 44.15% 45.29% 47.80%

Ours 60.46% 67.11% 53.93% 61.68% 67.52% 70.84% 68.05% 69.94%

Table 2: Ablation studies. I: ISBI, V: VNC, C: CHASE, D: DRIVE.

Method I-C I-D V-C V-D C-I C-V D-I D-V
Baseline 13.79% 26.40% 14.80% 26.43% 54.44% 64.75% 54.15% 59.51%

Baseline+GTN 51.92% 60.62% 36.47% 59.00% 53.26% 57.48% 56.42% 58.82%
Baseline+SNNI 56.60% 63.23% 50.79% 60.96% 54.79% 63.06% 62.36% 64.99%
Baseline+MAM 55.06% 34.30% 43.36% 36.24% 65.89% 57.01% 60.02% 62.03%

Baseline+GTN+SNNI 55.98% 64.38% 52.10% 61.29% 55.42% 60.95% 61.22% 65.73%
Baseline+GTN+MAM 34.28% 57.25% 27.67% 57.48% 64.29% 63.60% 64.47% 62.53%
Baseline+SNNI+MAM 59.35% 64.48% 53.32% 59.24% 64.54% 66.66% 63.04% 65.92%

Ours 60.46% 67.11% 53.93% 61.68% 67.52% 70.84% 68.05% 69.94%

1.2 Ablation Studies

We verify the effectiveness of the three proposed modules in the framework through ablation
studies. We use the segmentation network in [1] as a baseline and attach the proposed mod-
ules to the framework separately. The ablation results show that all three of our proposed
modules improve the segmentation accuracy. Figure 2 shows visualization results of abla-
tion studies. Table 2 lists the quantitative results of the ablation studies. Through ablation
studies, we also found that in some cases, the performance of using GTN and MAM is not
as good as using either of the two modules alone. We believe that the use of GTN + MAM
drives the model to refine the segmentation of the source domain without enhancing the seg-
mentation network, thus decreasing the segmentation performance of the target domain. The
effectiveness of the two combinations, GTN + SNNI and SNNI + MAM, proves our theory.
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