
AN, LIU, CAI: UDA FOR TSS ACROSS DIFFERENT ANATOMICAL SOURCES 1

Unsupervised Domain Adaptation for
Tubular Structure Segmentation Across
Different Anatomical Sources
Yuxiang An
yuan5699@uni.sydney.edu.au

Dongnan Liu
dongnan.liu@sydney.edu.au

Weidong Cai
tom.cai@sydney.edu.au

School of Computer Science
The University of Sydney
Sydney, Australia

Abstract

Unsupervised domain adaptation (UDA) aims to boost the generalization ability of
deep learning networks by leveraging the unlabeled data, which is a commonly used ap-
proach in medical image analysis. However, existing UDA methods only focus on bridg-
ing the gap between the same anatomical sites, which leads to the adaptation between
different anatomical sites under-explored. UDA under multi-anatomical source settings
is more challenging, due to 1) the gray-scale distribution and structural distribution of im-
ages of different anatomical sources of tubular structures vary greatly, and 2) The prior
knowledge contained in the labels of different anatomical sources is inconsistent. In this
paper, we propose an unsupervised domain adaptation method for segmenting tubular
structures across different anatomical sources. Specifically, we treat different anatomi-
cal sites as different sources. Our method first reduces the domain gap by automatically
adjusting the gray-scale distribution of images in different domains using a gray-scale
transformation network. Secondly, we introduce target domain noise when training the
segmentation network to further improve the segmentation accuracy of the framework in
the target domain. In addition, we also design a mask adjustment module for modify-
ing the masks of the raw data in both domains to make the model pay more attention to
the common features of the segmentation targets, which further improves the generaliza-
tion ability of the model. Experimental results on four public datasets at two anatomical
sources (eyes and cells) demonstrate the superiority of our proposed method compared
with existing state-of-the-art approaches.

1 Introduction
Segmentation of tubular structures such as blood vessels and extracellular membranes is
essential in clinical medical image analysis [19, 20, 28]. Vessel segmentation can help
determine the location of vascular lesions such as calcification sites [15], and can also
provide auxiliary information for bioinformatic recognition such as retinal recognition [7].
Neuronal membrane segmentation is an important step in neural circuit reconstruction [5].
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(a) (b) (c) (d)

Figure 1: Examples of images and labels from four different sources: (a) the fundus dataset
CHASE [9]; (b) the fundus dataset DRIVE [26]; (c) the electron microscopy cell dataset
ISBI [2]; and (d) the electron microscopy cell dataset VNC [11]. In each set of examples,
the left side is the image and the right side is the label.

Deep learning-based models have been widely used with good results for vessel segmen-
tation in fundus images and neuronal membrane segmentation in electron microscopy im-
ages [13, 25], but these methods only perform well on the current dataset. These tasks on
tubular structure segmentation require accurate labels during model training which is very
time-consuming and error-prone. Therefore, it is necessary to enhance the model’s gener-
alization performance for the segmentation across different types of tissues. To address the
challenge of limited labeling, unsupervised domain adaptation (UDA) methods that trans-
fer knowledge from the labeled source domain to the unlabeled target domain have been
intensively studied and applied to medical image analysis [18].

Recently, many approaches have been proposed to further improve the performance of
UDA methods for tubular structure segmentation in medical images. FFO [6] can improve
the segmentation accuracy of retinal vessels by fusing features and output space. SFUDA [1]
improves the segmentation accuracy of neuronal membranes by acquiring prior knowledge
of tubular structures. Although they have achieved great success, they still face the following
challenges: first, they only consider domain adaptation for the same anatomical source. The
scarcity of medical image data labels makes it important to utilize segmentation data across
anatomical sources for segmentation tasks. The significant difference in gray-scale distri-
bution and physiological structural distribution across anatomical sources greatly increases
the challenge of cross-anatomical domain adaptation. Secondly, there is background noise
that varies greatly between domains across anatomical sources. In addition, the medical
prior knowledge contained in the labels of different anatomical sources is not entirely con-
sistent and may be potentially conflicting. Facing the above challenges, we proposed a novel
unsupervised domain adaptive tubular structure segmentation framework across anatomical
sources. We validated the effectiveness of our framework on two anatomical sites, the eye
and the cell. Figure 1 presents the differences in images and labels from different anatomical
sources.

The major contributions of our work are summarized as follows: (1) We introduced
a gray-scale transformation network (GTN) to adjust the gray-scale distribution of differ-
ent domains to enhance the structural features thereby reducing the gap between different
anatomical sources (domains). (2) We designed a feature-level noise interference strategy
in the segmentation network (SNNI) to reduce background noise that varies greatly between
different domains. (3) To minimize the discrepancy between the medical prior information of
different anatomical sources, we designed a mask adjustment module (MAM) for modifying
the tubular structure masks of different anatomical sources. (4) To the best of our knowledge,
our method is the first to solve the task of UDA segmentation between different anatomical
sources. Our method outperforms various UDA methods on the tubular segmentation across
different tissues, including fundus, and neurons.
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Figure 2: The framework of our proposed unsupervised domain adaptation method for seg-
mentation of tubular structures across anatomical sources.

2 Related Work
Unsupervised domain adaptation methods can effectively improve the generalization ability
and robustness of the model. Both feature alignment and image alignment can effectively
reduce domain gaps. Feature alignment focuses on domain-invariant features. Image align-
ment reduces domain differences by transforming the styles of images from two domains.
Domain Adversarial Neural Network (DANN) [10] based on the idea of adversarial learning
is widely used in UDA methods due to its simple network structure and effectiveness. Many
DANN-based network structures are used for medical image analysis [29]. AADG [22] uses
a domain generalization method based on data manipulation to reduce the domain gap to
achieve retinal vessel segmentation. SCAN [12] leverages the retinal layer structure to facil-
itate domain alignment to achieve optical coherence tomography (OCT) fluid segmentation.
SFUDA [1] uses tubular structural features to promote model focus on domain-invariant
features to achieve neuron membrane segmentation. The above-mentioned unsupervised do-
main adaptation methods have achieved good transfer results in their respective anatomical
sources. However, differences in gray-scale distribution in different anatomical sources and
inconsistencies in medical prior knowledge limit the applicability of existing UDA methods
in different anatomical sources.

3 Methdology
As shown in Figure 2, our framework consists of three parts. The first part is a gray-scale
transformation network (GTN) based on gray-scale distribution and structural distribution
characteristics, which reduces domain gaps through image alignment. The input for GTN
is the original image X , the enhanced image Xenhanced , and the mask mask. The enhanced
images Xenhanced are obtained following Frangi method [8] and Jerman method [17], which
are further explained in Section 3.2. The mask mask is used to provide a region of interest
(ROI). The ROI in the fundus image is the part of the eyeball, and the ROI in the cell image
is the entire image. The output of GTN is transformed image Xtrans f ormed . The second part is
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Figure 3: The architecture of our proposed gray-scale transformation network.

an image segmentation network using noise interference (SNNI) for feature alignment. The
source domain flow in the segmentation network contains target domain noise. The pseudo
label yp of the target domain is obtained by the Jerman method [17]. The transformed back-
ground image of the target domain Xtb is obtained from the pseudo label yp and the image
of the target domain after gray-scale transformation Xtrans f ormed . The input for SNNI is the
transformed source domain image Xs, the transformed target domain image Xt , and the trans-
formed target domain background image Xtb. The output of SNNI is the predicted images of
the source domain ŷs and the target domain ŷt . The third part is the mask adjustment module
(MAM) used to reduce the difference in prior knowledge of different anatomical sources.
The input for MAM is the transformed image Xtrans f ormed and label y or pseudo label yp.
The output of MAM includes two masks, ŷthick and ŷthin.

3.1 Gray-scale Transformation Network
Due to the different collection methods and collection instruments of datasets for different
anatomical sources, as well as the inconsistent structures of different parts, there is a huge gap
in the gray-scale distribution and structural distribution of different anatomy images. Such
issue makes existing UDA method cannot work, such as the one based on style transfer [23].

To solve this problem, we propose a gray-scale transformation network (GTN) to nor-
malize the source and target images into a new space, by deprecating the domain-specific
structural information of these two domains. As shown in Figure 3, our data contains orig-
inal images X and their corresponding enhanced images Xenhanced . The input of the Image
Encoder is the original image X . After multiple downsampling, the size of the feature map
is obtained as b× 512× 32× 32, where b represents the batch size. Next, the feature map
is modified to a feature with size b×2048×1×1 through convolutional operations. Then,
the underlying feature is passed through the multiple linear layers and activation layers to
obtain the expected mean eigenvalue µ and standard deviation eigenvalue σ . By removing
the influence of pixels outside the mask mask on gray-scale information and distribution can
enable the GTN to focus more on the pixels within the ROI. Since masks from different
sources are different, we only calculate the inside pixels of the mask mask when calculating
µ and σ of the original image. The transformed images are defined as follows:

Xtransformed =


(

X− 1
∑i maski

∑i maski·Xi√
1

∑i maski
∑i maski·(X− 1

∑i maski
∑i maski·Xi)2

)
·σ +µ, maski = 1

0, maski = 0

, (1)
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Figure 4: The architecture of our proposed segmentation network using noise interference.
We utilize the EFW module [1] to optimize the enhanced image.

where i represents each pixel. To ensure the consistency between Xenhanced and X , we use µ

and σ to perform gray-scale transformation on both the enhanced images Xenhanced and the
original image X and combine them as the network output.

3.2 Segmentation Network using Noise Interference

SFUDA [1] demonstrated that tubular structural features as prior knowledge perform well on
small dataset segmentation tasks. However, they failed to consider that the accuracy of prior
knowledge of tubular structures in different anatomical sources varies greatly and that the
prior knowledge is not entirely correct. This phenomenon causes the model to potentially
learn incorrect features using incomplete prior knowledge. Therefore, we let the model learn
background information adversarially through the background noise of the target domain,
reducing the error caused by the model’s exclusive focus on incomplete foreground infor-
mation. The extracellular structures of neurons and retinal vessels are tubular structures.
Therefore, we use the Frangi feature extraction method [8] that considers the curvature of
the tubular structure and the Jerman feature extraction method [17] that considers different
contrasts in different parts of the tubular structure to extract features to obtain the enhanced
images Xenhanced . To address significant gaps in background noise across domains, we in-
troduced noise interference in the target domain during the training process of the source
stream.

As shown in Figure 4, our segmentation network using noise interference (SNNI) is es-
tablished based on [1], which achieves good performance on UDA electron microscopy (EM)
tubular segmentation. The input of the network is the original image, enhanced images, and
the background image of the target domain, all processed by GTN. Since the Jerman method
tends to perform better than the Frangi method, we obtain the background image of the target
domain Xtb through the image Xtrans f ormed and the pseudo label yp obtained by the Jerman
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method. yp is defined as yp = Jerman(y). The EFW module converts the target domain
image from three layers to two layers, while the segmentation network’s underlying feature
from the target domain image is inputted into the discriminator. The background image of
the target domain is directly fed into the segmentation network, yielding five layers of fea-
tures through downsampling. The source domain image is converted from three layers to two
layers through the EFW module and is then put into the SNNI, and the underlying feature
is fed into the discriminator. Additionally, we add the five-layer features downsampled from
the background image of the target domain to the five-layer features downsampled from the
source domain and then participate in the skip connection process of the source domain. This
allows the model to optimize segmentation features under the interference of target domain
background noise.

we use adversarial learning and self-supervised learning in the target domain. The seg-
mentation loss of the target domain should not have the same weight as the segmentation loss
of the source domain due to the inaccuracy of pseudo labels. In addition, to further improve
the segmentation accuracy, we provide weight to the domain loss to reduce the negative im-
pact of the recognition of domain differences on segmentation feature extraction. The loss
of the segmentation network is defined as follows:

L = LSeg
s (y, ŷs)+ρLSeg

t (yp, ŷt)+λGRL
(
LD

s (yD_s, ŷD_s)+LD
t (yD_t , ŷD_t)

)
, (2)

where LSeg
s and LSeg

t are the segmentation losses of the source domain and target domain.
LD

s and LD
t are the domain losses of the source domain and target domain. ŷs and ŷt are the

predicted images of the source domain and target domain. yD_s and ŷD_s are the domain label
and domain prediction of source domain. yD_t and ŷD_t are the domain label and domain
prediction of target domain. ρ and λ are respectively used to control the impact of target
segmentation loss and domain loss on the overall loss. All losses are based on binary cross-
entropy loss.

3.3 Masks Adjustment Module
The labels of different anatomical sources contain professional doctors’ medical knowledge
of the current anatomical source, and the same medical prior information is not completely
suitable for different anatomical sources. This medical prior information specific to the cur-
rent anatomical source is not conducive to UDA segmentation tasks. Based on the idea of
adversarial learning, we design the mask adjustment module (MAM) on the source domain
and target domain. MAM automatically modifies the annotation y of the original data in the
source domain to allow the model to pay more attention to the image itself while removing
unhelpful medical prior information. Since the pseudo label yp for the target domain is not
completely correct, the MAM also modifies the pseudo label yp of the original data in the
target domain to reduce the sensitivity of the model to pseudo label error information. There
are great differences in the thickness of tubular structures in different anatomical sources.
To address such cross-domain differences, we propose to optimize the segmentation perfor-
mance of the overall algorithm framework by adjusting the thickness of the tubular structure.

As shown in Figure 5, the input of MAM is the image Xtrans f ormed . The image is passed
through an encoder similar to the U-Net downsampling structure to obtain two thresholds.
One threshold is used to thicken the tubular structure mask, and the other threshold is used
to thin the tubular structure mask. Using the idea of adversarial learning to simultaneously
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Figure 5: The architecture of our proposed masks adjustment module.

thicken and thin the mask can prevent the generated masks from being too thick or too thin.
The thickness of tubular structures varies across different domains. Thickening and thinning
the mask for each domain can further mitigate domain differences. Due to the possibility
that pixels with similar features may belong to different classes in different domains during
cross-domain tasks, the thicker mask ŷthick enables the network to ignore potentially contro-
versial pixels at boundary locations in the cross-domain task, thus better discern the overall
difference between the foreground and background. And the thinner mask ŷthin allows the
network to focus more precisely on common features shared by all tubular structures, such
as the centerline feature.

We perform a convolution operation on the source domain labels y and the target do-
main pseudo-labels yp separately to obtain two pixel count maps representing the number of
positive samples surrounding each pixel. Small convolution kernels may not be well-suited
for the curvature of tubular structures, while large kernels may be less sensitive to the edge
information of vessels [16, 30]. Therefore, we adopt a 5× 5 kernel size for the convolu-
tion. Subsequently, we apply two thresholds (coarsening and thinning) on the positive pixel
count map to derive coarsening and thinning masks. The loss computed in each domain in-
cludes two masks and one label. The label is used to calculate the segmentation loss, and the
thickening mask ŷthick and thinning mask ŷthin are used to fine-tune the segmentation loss.
Therefore, when we calculate the loss, we need to reduce the weight of the mask to reduce
the impact on the correct segmentation result. The segmentation loss of the source domain
LSeg

s and the segmentation loss of the target domain LSeg
t are as follows:

LSeg
s = Ls(y, ŷs)+η(Ls(y, ŷthick_s)+Ls(y, ŷthin_s)), (3)

LSeg
t = Lt(yp, ŷt)+η(Lt(yp, ŷthick_t)+Lt(yp, ŷthin_t)), (4)

where η is controllable parameter. ŷthick_s and ŷthin_s are the two masks of source domain.
ŷthick_t and ŷthin_t are the two masks of target domain. y is the lable of the source domain. yp
is the pseudo label of the target domain. L represents binary cross-entropy loss.

4 Experiments

4.1 Datasets and Implementation Details
The experiment aims to segment tubular structures across anatomical sources. The experi-
ment includes four publicly available datasets from two anatomical sources. These consist
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of two cell datasets: ISBI 2012 EM Segmentation Challenge [2] (ISBI) and Neural Tissue
Segmented Anisotropy ssTEM dataset [11] (VNC), and two eye datasets: Digital Retinal
Images for Vessel Extraction [26] (DRIVE) and a subset of retinal images of multiethnic
children from the Child Heart and Health Study in England [9] (CHASE). The ISBI dataset
has 30 2D data with a size of 512× 512, of which 20 are used for training and 10 are used
for testing. The VNC dataset has 20 2D data with a size of 1024× 1024. We cut it into 80
images of 512×512, 60 for training and 20 for testing. The DRIVE dataset has 40 2D data
with a size of 584×565, of which 20 are used for training and 20 are used for testing. The
CHASE dataset has 28 2D data with a size of 999× 960, 20 for training and 8 for testing.
Since the input sizes of different fields in the model should be the same, we used the cubic
interpolation method to adjust the data size of the four datasets to 512×512. Due to the im-
balance in the number of samples used for training in different datasets, we increased each
of the four datasets used for training to 100 by rotating and flipping.

We used Adam optimizer. The initial learning rate is set to 0.001 with a weight decay rate
of 0.0001. Furthermore, the learning rate decreases by a factor of 0.9 every 10 epochs. ρ , λ ,
η are set to 0.8, 0.1, and 0.2 respectively. Our model is trained for a total of 50 epochs, and
the evaluation metric employed is the Dice similarity coefficient. Our framework leverages
GTN, SNNI, and MAM during the training phase, while only GTN and SNNI are used during
the testing phase.

4.2 Comparison Experiments

To verify the superiority of the proposed method, we conduct a comprehensive comparison
with 9 unsupervised domain adaptation methods on four datasets, including DANN [10],
UMDA-SNA [21], DCDA [23], SAM-UDA [4], ADANet [31], FFO [27], SFUDA [1],
MIC [14], and LA-UDA [3]. DANN is a very popular basic architecture used in UDA meth-
ods based on the idea of adversarial learning. UMDA-SNA adds spatial neural attention
(SNA) to the classic adversarial domain adaptation network to achieve domain adaptation.
DCDA uses a disentangling representation style transfer module and a collaborative consis-
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Table 1: Comparison experiments. I: ISBI, V: VNC, C: CHASE, D: DRIVE.

Method I→C I→D V→C V→D C→I C→V D→I D→V Average
U-Net(No adaptation) [24] 7.79% 2.88% 16.56% 22.84% 36.13% 20.13% 36.79% 27.76% 21.36%

U-Net(Supervised) [24] 80.59% 80.87% 80.59% 80.87% 78.73% 88.30% 78.73% 88.30% 82.12%
DANN [10] 12.34% 13.75% 13.43% 19.27% 57.88% 62.81% 47.88% 44.84% 34.03%

UMDA-SNA [21] 15.87% 10.85% 13.75% 21.35% 42.36% 32.24% 37.70% 19.57% 24.21%
DCDA [23] 15.92% 14.17% 16.33% 20.16% 61.23% 63.06% 46.59% 45.28% 35.34%

SAM-UDA [4] 14.10% 10.78% 13.92% 16.89% 43.43% 39.95% 40.35% 22.83% 25.28%
ADANet [31] 11.43% 9.69% 14.31% 12.49% 65.40% 36.48% 41.69% 23.56% 26.88%

FFO [27] 19.73% 18.13% 14.80% 20.04% 48.57% 36.67% 46.90% 35.33% 30.02%
SFUDA [1] 13.79% 26.40% 14.80% 26.43% 54.44% 64.75% 54.15% 59.51% 39.28%
MIC [14] 15.42% 10.86% 14.85% 15.13% 61.85% 68.74% 59.14% 64.57% 38.82%

LA-UDA [3] 36.76% 39.70% 24.67% 26.34% 56.19% 44.15% 45.29% 47.80% 40.11%
Ours 60.46% 67.11% 53.93% 61.68% 67.52% 70.84% 68.05% 69.94% 64.94%

tency learning module to assist domain transfer. SAM-UDA improves the performance of
the UDA method by focusing on the correlation between pixels through the self-attention
mechanism. ADANet uses a discriminator based on atrous convolution to improve its dis-
criminative ability and optimize segmentation performance. FFO uses two discriminators
to achieve UDA retinal vessel segmentation by fusing features and output space. SFUDA
utilizes priori knowledge of tubular structures to achieve neuronal membrane segmentation.
MIC enhances global semantic information correlation using masked image consistency.
LA-UDA accomplishes domain adaptation by training the augmentation module and classi-
fier in two phases, respectively.

For a fair comparison, we use the same U-Net backbone network as the segmentation net-
work in these methods. We show the upper and lower bounds of the U-Net metric without
domain adaptation. Our framework achieves considerable performance improvements, out-
performing mainstream unsupervised domain adaptation methods in terms of metrics. Fig-
ure 6 is the visualization of the comparison results between SFUDA as the baseline method
and our method. The visualization of the complete comparison results are in the supplemen-
tary materials. Table 1 quantitatively shows the difference in indicators of different UDA
methods, indicating that our method produces more accurate segmentation results. Experi-
mental results show that existing unsupervised domain adaptation methods initially proposed
for a single anatomical source do not perform well when applied to different anatomical
sources. This is due to the significant differences in data characteristics across anatomical
sources, and the failure of these methods to provide clear feature constraints and assistance
for segmentation objectives.

4.3 Ablation Studies

We verify the effectiveness of the proposed modules in our framework through ablation ex-
periments. We use the segmentation network in [1] as the baseline and attach the proposed
modules to the framework respectively. It shows that our method improves segmentation
accuracy through three modules. Table 2 shows the quantitative results of the ablation exper-
iments. The results demonstrate the effectiveness of our proposed three modules. Through
ablation experiments, we also found that there are cases where the performance of using
GTN and MAM is not as high as using either of these two modules alone. We posit that
utilizing the first and third modules encourages the model to refine its segmentation ability
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Table 2: Ablation studies. I: ISBI, V: VNC, C: CHASE, D: DRIVE.

Method I-C I-D V-C V-D C-I C-V D-I D-V
Baseline 13.79% 26.40% 14.80% 26.43% 54.44% 64.75% 54.15% 59.51%

Baseline+GTN 51.92% 60.62% 36.47% 59.00% 53.26% 57.48% 56.42% 58.82%
Baseline+SNNI 56.60% 63.23% 50.79% 60.96% 54.79% 63.06% 62.36% 64.99%
Baseline+MAM 55.06% 34.30% 43.36% 36.24% 65.89% 57.01% 60.02% 62.03%

Baseline+GTN+SNNI 55.98% 64.38% 52.10% 61.29% 55.42% 60.95% 61.22% 65.73%
Baseline+GTN+MAM 34.28% 57.25% 27.67% 57.48% 64.29% 63.60% 64.47% 62.53%
Baseline+SNNI+MAM 59.35% 64.48% 53.32% 59.24% 64.54% 66.66% 63.04% 65.92%

Ours 60.46% 67.11% 53.93% 61.68% 67.52% 70.84% 68.05% 69.94%

within the source domain without enhancing the segmentation network, thereby diminishing
the segmentation performance within the target domain.

5 Conclusion
In this work, we proposed a novel domain-adaptive tubular structure segmentation frame-
work across anatomical sources. Compared with other UDA methods, our method has
achieved great success. We designed GTN, SNNI, and MAM to face the task of segmenting
tubular structures across anatomical sources. We achieved domain adaptation from both the
image alignment and the feature alignment, that is, the differences in gray distribution and
background noise in different anatomical sources. In addition, we further reduce the domain
gap caused by inconsistent medical prior knowledge of masks from different anatomical
sources. To the best of our knowledge, we are in the early stages of trying to implement un-
supervised domain adaptation methods across anatomical sources on medical images. Due
to the attractive performance of our method, it can be expanded for future applications in
multi-anatomical segmentation tasks.
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