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Figure 1: We present TalkLoRA, a method for improving any transformer-based speech-
driven animation model. We use Low Rank Adaptation to effectively and efficiently adapt to
new identities and chunking to improve inference speed, with no loss of quality.

Abstract

Speech-driven facial animation is important for many applications including TV, film,
video games, telecommunication and AR/VR. Recently, transformers have been shown
to be extremely effective for this task. However, we identify two issues with the existing
transformer-based models. Firstly, they are difficult to adapt to new personalised speak-
ing styles and secondly, they are slow to run for long sentences due to the quadratic com-
plexity of the transformer. We propose TalkLoRA to address both of these issues. Talk-
LoRA uses Low-Rank Adaptation to effectively and efficiently adapt to new speaking
styles, even with limited data. It does this by training an adaptor with a small number of
parameters for each subject. We also utilise a chunking strategy to reduce the complexity
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of the underlying transformer, allowing for long sentences at inference time. TalkLoRA
can be applied to any transformer-based speech-driven animation method. We perform
extensive experiments to show that TalkLoRA archives state-of-the-art style adaptation
and that it allows for an order-of-complexity reduction in inference times without sacri-
ficing quality. We also investigate and provide insights into the hyperparameter selection
for LoRA fine-tuning of speech-driven facial animation models.

1 Introduction
3D Digital humans are very pervasive across many forms of media. TV, video games,
movies, telepresence and marketing, make extensive use of them. Furthermore, they are
a critical component in 2D Talking Head generation [22, 27, 28, 30, 31]. As social creatures,
humans pay a lot of attention to each other’s faces [10]. This makes us very good at discern-
ing details relating to the face. Of particular importance is the motion of the face. With even
small errors in this facial animation, the end result enters into what is known as the ‘uncanny
valley’, an unsettling phenomenon that prevents acceptance of the digital human [23].

A traditional way of obtaining high-quality facial animations is for skilled artists to man-
ually pose the face into keyframes, and to interpolate between these. This process is, how-
ever, very slow and expensive, making it feasible only for the most important facial anima-
tion. Another popular method is the use of performance capture which involves attempting to
match an actor’s performance to a 3D face rig (e.g. [8, 13, 25]). This process is, again, costly.
For high-volume facial animations, speech-driven facial animation is popular. Furthermore,
certain applications require procedurally generated facial animations that are synthesised on
the fly from audio or text input. For example text-driven avatars, or conversational agents.

A recent surge of methods has excelled at producing high-quality facial animations from
speech signals [2, 7, 9, 12, 26, 29]. These methods, however, mostly require a significant
amount of data per person. To date, only a small number of works have considered how best
to adapt speech-driven animation systems to new identities [29].

Furthermore, a large number of these works are transformer-based. This means to gen-
erate a facial expression at time t, they look at all tokens in the range [0, t −1], making them
O(N2) in complexity where N is the length of the animation. This is unsuitable for long an-
imations. It is also a counterintuitive approach, conditioned on audio, why should the facial
expression at any given time depend on the expression from, for example, ten seconds ago?
The use of full-length context is therefore unnecessary and detrimental.

We propose TalkLoRA to address both these problems. TalkLoRA uses Low-Rank
Adaptation to adapt existing pre-trained transformer speech-driven models. LoRA allows
for more efficient and effective fine-tuning in both limited and plentiful data scenarios. Fur-
thermore, TalkLoRA utilizes a fixed context window in the transformer, reducing the compu-
tational complexity to a constant level and allowing much longer sequences to be processed
without a drop in quality.

It is important to note that while we base TalkLoRA on two specific models, it could
equally be applied to any transformer-based model, including emotional models [9] or even
speech-driven implicit models [2, 15].

In summary, our contributions are:

• A methodology for effective and efficient adaptation of any transformer-based speech-
driven animation model (Table 1) that runs with an order-of-complexity reduction in
inference time (Section 3.3).
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• A LoRA-based adaptor for fitting speech-driven animation models to new subjects,
together with an analysis on the improvement over state-of-the-art (Table 1), the effect
of dataset size (Table 1) and the impact of hyperparameter selection (Sec 5.3).

• The use of a limited context window in the transformer through chunking, that reduces
the inference time. We also include analysis of this component, showing that it does
not reduce quality, and an investigation into the required context length (Figure 2 &
4).

2 Related Work

2.1 Speech-Driven 3D Facial Animation

Speech-driven 3D facial animation involves producing facial animations, as sequences of
either blendshapes or vertices from an input audio sequence. Very early methods use rule-
based approaches based on visemes (the visual counterpart to phonemes) [1, 6, 11, 19].
These methods work fairly well for high-volume digital humans, but are very simplistic and
cannot faithfully produce high-quality animations. Since the advent of deep learning, many
data-driven methods have been proposed with greater capabilities [7, 9, 12, 20, 29]. Kar-
ras et. al. [20] train an auto-regressive CNN-based model to predict vertices from audio
segments. This method only works on the actor that it is trained for. VOCA [7] improves
upon this by adding one network shared across several identities, disambiguation is achieved
through a one-hot encoding of identity, and novel identities can be added using a linear in-
terpolation of existing ones. Faceformer [12] works similarly with one-hot encodings and
achieves better results with the use of transformers. Several works apply this transformer-
based, one-hot identity model to subdomains, for example, emotional speech-driven anima-
tion [9] or speech-driven animation of implicit models [2, 14]. There are two significant
drawbacks to this. First, the one-hot encoding severely limits the ability of the model to
adapt to new identities. Secondly, the transformer decoders use the entire audio segment
for generation with the self-attention mechanism. This quickly becomes infeasible for long
sentences. Imitator [29] looks to address the first of these problems by fine-tuning certain
layers in their model. While this does help, it is both slow and sub-optimal. Our method,
by comparison, is able to effectively and efficiently adapt to new identities using LoRA [17]
and can handle longer sequences using a fixed-context window.

2.2 Transfer Learning

Transfer Learning is a very general problem in the field of machine learning. The objective
is to take a large model that has been trained on one dataset and to adapt it for use on
another, often smaller, dataset. Transfer learning has been most prominently investigated in
the context of NLP (e.g. [4, 16, 24]) and vision [5, 18, 32]. Recent work has also investigated
the topic of speech recognition [33], which is closely related to our work on speech-driven
animation.

A naive way of achieving transfer learning to resume the training of a model using the
pre-trained weights and optimising all parameters. However, this has several issues. For
one, this is a slow process and it is very memory intensive. Furthermore, if the new dataset
is small, training a large model in this way makes it very vulnerable to overfitting. This has
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given rise to the field of parameter-efficient fine-tuning (PEFT), where only a small num-
ber of parameters are updated. Some methods focus on tuning a subset of network layers,
however, this restricts the level of abstraction at which the tuning operates. More recently,
methods have addressed this problem by optimising more layers using lower dimensional
decomposition with small neural networks [16]. Unfortunately, this introduces a large over-
head at inference time. Therefore Low-Rank Adaptors (LoRA) were proposed [17]. LoRA
works by decomposing weight matrices into two lower-rank matrices whose product is the
same shape as the weight matrix. This can be added to the pre-trained weights and used with
no overhead, yet still allowing for parameter-efficient finetuning.

In the context of speech-driven facial animation, the goal of transfer learning is to adapt
pre-trained models to new identities. Often, there is little person-specific data available on
which to perform adaptation. This means that it is essential to avoid overfitting. Imitator
[29] achieves this by fine-tuning a style code and the final layer. This works well but is
highly restrictive, effectively serving as an interpolation of existing styles with an additional
linear transformation. We propose using LoRA [17] which allows us to adapt the model in a
non-linear and more flexible way, leading to better results.

3 Method
Our objective is to improve any existing transformer-based speech-driven animation system.
We therefore propose components that do not make any additional assumptions about the
model. We first describe two existing state-of-the-art speech-driven animation models (Sec-
tion 3.1) to show the differences, our model works on both. We then discuss our use of
Low-Rank Adaptors to allow us to adapt existing models to new identities (Sec 3.2). Finally,
we improve the inference speed of existing models for long sequences using a chunking
strategy (Sec 3.3). We show these steps in Figure 1.

3.1 Architectures
The basic architecture of our model is determined by the base model we use for adaptation.
For the case of our experiments this is either FaceFormer [12] or Imitator [29]. In either case,
there are some significant similarities. Each model consists of three components, an audio
encoder, a transformer decoder and an per-frame decoder.
Audio Encoder: For both Imitator and Faceformer the audio encoder is the same. Wav2Vec2
[3] is used due to its powerful ability as a feature extractor. Wav2Vec2 is trained for speech
recognition on a large and diverse dataset. The choice of speech recognition as a task means
that the output features of the model are person-agnostic, allowing for good generalisation of
the speech-driven models to novel audio. The final layer is discarded and the outputs of the
final hidden layer are taken as the audio features. The Wav2Vec2 model outputs features at
50Hz, these are linearly resampled to match the fps of the target animations, and a learnable
linear layer converts these to the desired dimensionality.
Tranformer Decoder Both models also make use of a transformer decoder to consider tem-
poral information. They each use cross-attention using the audio features from the audio
encoder. The key difference is that Imitator’s transformer is person-independent while Face-
Former’s is not. FaceFormer encodes the vertices from the previous time step, adds a person-
specific style code and then passes the result to a transformer. Whereas Imitator uses a prede-
fined start token, which is the same for all subjects, and produces person-independent viseme
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tokens from the audio features. It is important to note that TalkLoRA does not require either
of these choices over the other, both our adaptor and the chunking procedure can be applied
to any transformer-based model.
Motion Decoder The final step is to produce the vertices from the transformer output. As
FaceFormer includes style information in the transformer, only a single linear layer is used
to project the transformer output onto the FLAME vertices. Imitator, on the other hand,
introduces the person-specific style code here by adding it to the transformer output. Imitator
then uses an MLP to predict vertices.

3.2 LoRA
In order to adapt a baseline model to a new subject we make use of Low-Rank Adaptors
(LoRA) [17]. LoRA is a method for parameter-efficient fine-tuning originally proposed for
large language models. Instead of training all the weights in a model, or some subset of
the layers, LoRA adds an offset to the weight matrices of layers using rank decomposed
matrices. Specifically, consider a weight matrix W ∈ RN×M . LoRA models the adaption as:

W ′ =W +∆W =W +ABT (1)

Where A ∈RN×r and B ∈RM×r, with r << min(N,M). The idea is that as new datasets have
low intrinsic dimensionality, the required weight updates will also.

We have several considerations for which components of the network we should apply
LoRA to. First, for the audio encoders, we consider it counterintuitive to apply LoRA. The
audio encoder is powerful precisely because it is highly generalised. This allows it to encode
audio from any person (for example from a TTS system or voice actor) into a common feature
space. While adapting the audio encoder may improve the performance for audio coming
from the subject, it is likely to overfit and hinder performance from other audio sources. We
therefore do not consider applying LoRA to this part of the network.

For the decoders, however, we want the model to adapt to just a single identity. That is,
we want the decoded motion to take on the style of the speaker. This gives us two candidates
for LoRA application. The transformer decoder and/or the motion decoder. We show which
is preferable in Section 5.3.

LoRA introduces a small set of parameters for fine-tuning. This allows for a tradeoff
between the representational power of the model and regularization. That is, how likely it
is to overfit. Given a dataset with a lower intrinsic dimensionality, we would expect to use
a smaller value of r. In Section 5.3, we determine the optimal value of r for our datasets
empirically.

3.3 Limiting Context Window for Speedup
Faceformer [12] and Imitator [29], as well as other transformer-based speech-driven anima-
tion methods [2, 9], all use transformers with unlimited context lengths. To compute what
the lips should look like at time t = 60s, they will look at the entire history of the lip motions
from time t = 0s. This is a holdover from the original use of transformers in NLP, where
words may hold influence over long time periods. For facial animation, however, this as-
sumption does not make sense. The audio is used as input, meaning there is no need for the
transformer to learn an internal language model, only the audio in a short context window,
and the last few frames of the facial expression should matter.
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Figure 2: The chunking process is used to limit the context window of the transformers. We
split incoming audio into overlapping chunks of size K+2P and process these in parallel. The
padding is then removed and the results concatenated.

We therefore look to reduce the context window of the transformers. Note that we are
not retraining the base models. Therefore, we need to alter the architecture at inference
time in such a way that it only sees a small context window without degrading performance.

To do this, we apply chunking. We split the input audio of length T into overlapping
padded chunks of fixed size K + 2P. Here P is the size of the padding. The idea is that the
padding “warms up" the transformer, providing good context for inference. The predictions
in this padded region are likely to be poor, so these are simply discarded. An example of this
is shown in Figure 2.

Transformers notoriously have quadratic complexity in the size of the input sequence
(O(N2). By using a constant and fairly small value K < N the complexity is simply a linear
O(NK2) << O(N2) ( N

K sequences of length K). This is an order of complexity reduction.
We determine the values of K and P required for optimal performance in Section 5.4.

4 Implementation Details

For each base model, we train using the procedures set out in the respective papers. We
use these base models as a baseline. For person-specific adaptation we use the loss weights
outlined in Imitator [29] with λrec = 1.0 and λvel = 10.0. We use the AdamW optimiser with
a learning rate of 0.001. Unless otherwise specified, we use a LoRA rank of 4 and LoRA
alpha value of 8. We find empirically that the model converges after just 50 epochs, so we
train our adaptor for this many.
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Table 1: Comparison of adaptation strategies, we compare our method to Imitator’s described
adaptation [29], and FaceFormer with adaptation of the style code [12]. We show that our
adaptation strategy improves both models. We also include the baseline models for reference.
The best results for each dataset size are shown in bold, the best adaptation for each base
model and dataset combination is underlined.

Subject A Subject B
LFace

2 ↓ LLip
2 ↓ Lip-Max ↓ Time (mm:ss)↓ LFace

2 ↓ LLip
2 ↓ Lip-Max↓ Time (mm:ss)↓

Faceformer (Base) 0.933 0.181 6.097 - 0.710 0.098 3.694 -
Imitator (Base) 0.902 0.157 5.609 - 0.736 0.141 4.781 -

Imitator (1 Sentence) 0.911 0.136 5.021 07:29 1.065 0.091 3.462 10:43
Imitator + Ours (1 Sentence) 0.900 0.135 4.975 00:30 1.059 0.090 3.440 00:42

Faceformer + Style (1 Sentence) 0.881 0.153 5.397 03:46 0.715 0.118 4.160 04:27
Faceformer + Ours (1 Sentence) 0.876 0.153 5.395 00:40 0.698 0.114 4.074 00:50

Imitator (3 Sentence) 0.904 0.136 4.946 24:23 1.114 0.094 3.515 34:57
Imitator + Ours (3 Sentence) 0.903 0.134 4.884 01:55 1.113 0.094 3.157 02:17

Faceformer + Style (3 Sentences) 0.875 0.151 5.366 12:13 0.707 0.114 4.025 13:50
Faceformer + Ours (3 Sentences) 0.852 0.144 5.248 02:14 0.811 0.97 3.790 02:29

Imitator (5 Sentence) 0.878 0.131 4.780 50:35 1.070 0.093 3.481 61:03
Imitator + Ours (5 Sentence) 0.877 0.128 4.657 03:19 1.103 0.092 3.490 04:07

Faceformer + Style (5 Sentences) 0.859 0.149 5.359 20:45 0.703 0.110 3.936 23:40
Faceformer + Ours (5 Sentences) 0.838 0.139 5.137 03:49 0.830 0.098 3.863 04:19

Imitator (10 Sentence) 0.867 0.129 4.659 93:39 0.865 0.086 3.244 107:22
Imitator + Ours (10 Sentence) 0.888 0.126 4.547 06:33 0.783 0.086 3.252 07:45

Faceformer + Style (10 Sentences) 0.848 0.147 5.340 39:29 0.697 0.098 3.726 43:32
Faceformer + Ours (10 Sentences) 0.816 0.133 4.960 07:18 0.705 0.094 3.731 07:53

Imitator (30 Sentence) 0.697 0.125 4.470 259:19 0.635 0.083 3.058 316:54
Imitator + Ours (30 Sentence) 0.695 0.124 4.367 17:07 0.595 0.082 3.130 21:00

Faceformer + Style (30 Sentences) 0.790 0.139 5.08 117:36 0.612 0.091 3.631 129:37
Faceformer + Ours (30 Sentences) 0.739 0.125 4.677 20:43 0.611 0.90 3.604 23:23

Figure 3: Qualitative results of our method showing a sentence on one of the train subjects.
We compare our adaptation method on both Imitator and Faceformer and show improve-
ments over their respective adaptation methods.
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Figure 4: Graphs for determining the values of chunk size (K) and padding size (P) for
chunking. (a) shows the effect of the size (K) of chunks compared vs the inference time
and the validation loss for a validation subject. Too small a chunk takes a long time due to
the padding, and also has poor quality. We find a sweet spot for time savings and quality at
around 1-3 second chunks. (b) shows the effect of overlap size (P) in chunking. We show
the y-postion of two lip vertices over time. It can be seen that a 0.2s overlap in chunking
allows for outputs that are close to the un-chunked base model.

5 Results

5.1 Data
For all of our experiments we use VOCASET [7]. VOCASET consists of the meshes from
12 subjects each speaking 40 sentences at 60fps. VOCASET is split into 8 train subjects, 2
validation subjects and 2 test subjects. For our experiments, we train the base models on the
8 train subjects and use the 2 test subjects for our person-specific adaptions. We name these
test subjects Subject A and Subject B. We further split the data for subjects A and B into
train and test sets. We withhold the final 10 sentences as a test set and use various subsets of
the remaining 30 for adaptation depending on the experiment.

5.2 Comparison to State-of-the-art
To date, only Imitatior [29] has attempted person-specific adaptation. We therefore compare
our results primarily to this model. Specifically, we compare our method of LoRA fine-
tuning to Imitator’s method of fine-tuning the final layer and style code of the model for 300
epochs each. We show this for several different person-specific dataset sizes, ranging from
1 sentence (about 4 seconds) up to a maximum of 30 sentences (approximately 2 minutes).
Faceformer is not designed to be adapted for new identities, however, this can be done to
some degree by optimising the style code used in the model. We denote this as Faceformer
+ Style. Following previous work, we do this for 300 epochs. In addition to this, we also
include baseline results from FaceFormer and Imitator without person-specific adaptation.
To do this, we run inference using each of the 8 training styles from VOCASET and select the
one with the best metrics. We show results for TalkLoRA using both Imitator and Faceformer
as a base model, showing that it can be applied to any transformer-based speech-driven
model.

To compare models, as is standard practice, we use the L2 distance between vertices in
the last 10 sentences of the test subjects. We separate this into a full-face metric LFace

2 using
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all the vertices and a lip-only metric LLip
2 that uses only the lip vertices. Following MeshTalk

[26] we also use the Lip-Max metric, which is defined as the mean of the maximum L2
distance of any lip vertex across all frames. In addition, we also measure the time taken for
each adaptation model. Specifically, we record the time to train each adaptation using an
NVIDIA L4 GPU.

The results are shown in Table 1. Our method of adaptation achieves state-of-the-art
results in the vast majority of training configurations and metrics, while being significantly
faster to train. It consistently improves both Imitator and Faceformer, suggesting it can be
applied to any transformer-based speech-driven animation model. The improvement is also
seen visually in Figure 3.

5.3 LoRA Parameter Selection

Figure 5: The effect of rank on lip L2 loss
across random training subsets. ≈ 4 yields the
best results.

LoRA [17] may be applied to any combi-
nation of layers in the network. Each base
model is split into three components (see
section 3.1). We find that application to
the audio encoder is a bad idea, as this is
specifically designed to be person-agnostic
to allow for audio from any person to be
used. We, therefore, only consider applying
LoRA to the transformer decoder and the
motion decoder. There is a single parame-
ter that has significant influence over LoRA
models, this is the rank r of the decomposed
matrices.

To determine the best value of rank r we
design a short experiment. We use the fol-
lowing procedure: For a random test sub-
ject, we randomly select an integer value
between 1 and 30 representing the number of sequences we will use for fine-tuning. We
then randomly select this many sequences from the training set of the given subject. We then
use set r to each of the values {1,2,4,8,16,32} and compute the lip L2 loss. We run this
random sampling approach 30 times and take the average for each value of r. The results
are shown in Figure 5. It can be seen that the optimal value for r is around 4 so this is the
value we choose. Lower than this does not properly exploit the available data, while much
greater means the model overfits. This suggests that the person-specific data in VOCASET
has a low intrinsic dimensionality.

5.4 Effects of Chunking

We also design an experiment to test the efficacy of our chunking method on long audio
sequences. To do this, while still using ground truth data for computing metrics, we create
artificial long sentences. This is done simply by concatenating the ten test sentences from
each VOCASET subject with one second of silence in between. When calculating metrics,
we mask out these silent regions. We experiment with various values of chunk size K and
padding P. We use the pre-trained base Imitator for this experiment.
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We calculate the L2 loss across the long sequences for various values of K and record the
run time. The results of the chunking experiments are shown in Figure 4 (a). It can be seen
that small chunk sizes cause much higher losses. This is because the transformer never gets
adequate context. This effect diminishes at around 2-second long chunks. It can be seen that
the run-time is optimal at 0.5-2 seconds. We therefore use a chunk size of 2 seconds for our
model. For P we find that the effect on the loss is much less noticeable. However, errors
occur around the cut points when P is too small. This can be seen in Figure 4 (b) in the
red boxes. Small amounts of padding cause the first few frames to not have enough context
leading to differences between the chunked model and the base model. We find that 0.2s of
padding is enough to alleviate this without a significant increase in inference time.

6 Limitations and Future Work

While our work can adapt effectively to new identities and run with faster inference, there are
still some drawbacks. First, even with properly calibrated values of K and P, chunking will
still reduce the quality of models trained with long context. This means for short sentences
it is often not worth chunking. In future, it may be worth investigating training models with
this chunking. We hypothesise this may help prevent the model from overfitting to spurious
temporal correlations in speech segments in the data. Another interesting line of research
would be to include learnable weights that perform the fusing of the chunks.

While we were able to find a good set of parameters to train our LoRA models, we
have only considered fixed parameters for all dataset sizes. It is likely that given more data,
one may want to increase the LoRA rank as the risk of overfitting is reduced and intrinsic
dimensionality increased. Exploring questions like this, as well as considering other methods
of adaptation (e.g. controlnet [34] or BOFT [21]) is left as future work.

7 Conclusion

We have presented our work, TalkLoRA for adapting transformer-based, speech-driven an-
imation models to new identities using LoRA. Our method is capable of adapting to new
speakers better than existing state-of-the-art models, as we are better able to avoid overfitting
to the low intrinsic dimensionality of 3D talking head datasets. TalkLoRA also improves in-
ference speed through our chunking strategy. Our method is applicable to any speech-driven
model, provided it uses transformers, making it easy for general adoption. Our method has
applications in video games and film/TV using digital characters, as well as in photorealistic,
2D, audio-driven talking head animation.
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