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1 Datasets

In this section, we provide a more detailed description of the public benchmarks we used in
our experiments.

MVTec [1] is a widely used unsupervised industrial anomaly dataset that contains sam-
ples for training and samples in the testing set. There are 15 categories of which are 5 textures
(carpet, grid, leather, tile, wood) and 10 objects (bottle, cable, capsule, hazelnut, metal nut,
pill, screw, toothbrush, transistor, zipper) in this dataset. VisA [7] is another popular unsu-
pervised industrial anomaly detection dataset, which contains 12 subsets corresponding to
12 different objects. Compared with MVTec, the VisA dataset is concentrated on more re-
fined anomaly detection tasks, such as the defects on printed circuit boards. Since these two
benchmarks only contain samples from a single distribution, to simulate distribution shift
in real-world applications, we use imagecorruption package to corrupt these samples.
Like [2], we generate four types of corrupted samples, which are brightness, contrast, blur,
and Gaussian noise. All the corruption’s severity is set to 3.

AeBAD [4] is an anomaly detection dataset that focuses on modeling various distribu-
tion shifts within real-world industrial scenarios. The distribution shifts are attributed to
variations in illumination, viewing angles, and backgrounds. Figure 1,2 and 3 provide some
examples of these datasets.

2 Implementation Details

We provide more information about implementing our method in this section. The foun-
dation CLIP model we used is ViT/B-16+ pre-trained by OpenCLIP. We adopt a prompt
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Figure 1: Example images from MVTec.

Training Background [llumination View

Figure 2: Example images from AeBAD.
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Figure 4: Anomaly detection performance under different balance coefficients on AeBAD.

learning method CoOp [5] to optimize the distribution and diversity words. The length of
distribution and diversity words is 2 and 8, respectively. We initialize them by using a Gaus-
sian distribution with 0 mean and 0.02 standard deviation. Then, we use the £; to train each
distribution word for 60 epochs. When training the diversity words, we use £, to optimize
these words for 100 epochs. An SGD optimizer is used to train the network with an initial
learning rate of 0.002 which is adjusted via the cosine decay strategy, and a momentum of
0.9. For the [object] we used in the class prompts, we use aeroengine blade for
AeBAD and ob ject on all the subsets of MVTec and VisA. As for the prompt template in
the L., we directly adopted the same prompts used in WinCLIP [3] for a fair comparison.

3 Hyperparameter Analysis

Firstly, we measure some important hyperparameters in our method, including a, f3, v as the
balance coefficients in the learning objectives £ and £,. Figure 4 shows the results under
the wider values of these hyperparameters. As observed, the best performance is achieved
when o equals 0.01, 8 equals 0.8 and v is set to 0.5. Our method showed only a maximum
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Figure 5: Anomaly detection performance under different lengths of (a) distribution and (b)
diversity words on AeBAD.

decrease of 4.5% in performance within this wide range of values, indicating its insensitivity
to these hyperparameters. It is worth noting that our model achieves its best only when «
is relatively low. We believe it is reasonable, since a larger scale factor & may make the
distribution words overfitted to the predefined prompts. This may decrease their diversity
and ability to generalize to arbitrary distributions. Also, we study the length of distribution
and diversity words in Figure 5 (a) and (b), respectively. We find that as the length of the
words increased, there was a decline in the performance of the method, which indicates that a
longer length might introduce too much redundant information and compromise our method.

4 Ablation Studies on Knowledge Distillation

This section investigates the performance comparison when
using different prompts for £;.y;. The results are given in Ta-
ble 1. The first line of Table | means we remove the knowl-
edge distillation loss in the first stage, which acts as a base- None 78.5 83.7
line method. Since we report the performance of our meth- ~ CLIP-AC 71.9 88.2
ods on using prompts designed by WinCLIP (the fourth line CLIP-AC*  80.5  89.7
in the Table 1), to further investigate the impact of different ~WinCLIP 80.7  89.7
prompt words on the performance of our method, we re- Table 1: AUROC and AP
place the prompt words with the template provided by CLIP on AeBAD with different
on ImageNet (denoted by CLIP-AC in Table 1). By com- prompts in the first stage.
paring the first and the second line of Table 1, we found that

the performance of our method is slightly decreased when using ImageNet prompts. Consid-
ering that the ImageNet prompt template contains many unreasonable prompts for industrial
scenarios like "a weird photo of"or"graffiti of the", we then remove these
unreasonable prompts, use a subset of the ImageNet prompts to reproduce the experiment,
represented by CLIP-AC* in Table 1 (the third line). With the reduced prompts, our method
reaches a satisfactory performance. This finding suggests that the knowledge introduced in
Lyexr should be reasonable and roughly indicate the probable distributions during test time.
Introducing prompts that are incapable of industrial scenarios may be harmful to our method.

Methods AUROC AP
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Objects WinCLIP  AnomalyCLIP Ours
carpet  (99.0,99.7) (1.0,1.0) (99.8,99.9)
bottle  (96.3,98.9)  (86.0,958)  (97.599.2)
hazelnut  (88.1,93.9)  (85.592.7)  (88.7.94.2)
leather (1.0,1.0) (99.9,1.0) (1.0,1.0)
cable  (69.3,79.8)  (65.0,77.6)  (74.9,818)
capsule  (68.5,90.6)  (78.8,94.9)  (76.7,94.1)
grid (96.1,98.7)  (92.4,97.5)  (99.5,99.8)
pill (68.0924)  (66.2,89.7)  (63.9.91.4)
transistor  (83.0,79.2) (83.9,80.5) (81.6,80.9)
metal nut ~ (95.1,98.9)  (97.099.3)  (93.0,98.2)
screw  (62.2,81.8)  (45.7,75.7)  (50.8,77.3)
toothbrush ~ (76.7,90.9)  (80.3,92.0)  (85.3,94.9)
zipper  (89.596.9)  (89.2,97.0)  (89.2,96.7)
tile (1.0,1.0) (1.0,1.0) (1.0,1.0)
wood  (93.297.8)  (99.299.8)  (93.2,97.9)
mean  (85.7,93.3)  (84,692.8)  (86.3,93.7)
Table 2: Fine-grained AD performance
(AUROC and AP) for MVTec Brightness
dataset.
Objects WinCLIP  AnomalyCLIP Ours
carpet  (96.5,99.0)  (98.0,99.5)  (99.4,99.8)
bottle  (94.698.2)  (91.0,97.5)  (92.597.7)
hazelnut  (93.6,96.6)  (89.9.94.5)  (91.395.3)
leather  (99.8,99.9)  (98.9,99.5)  (99.0,99.7)
cable  (70.4,82.8)  (59.9,743)  (72.1,80.2)
capsule  (65.5,89.5)  (85.2,96.6)  (76.7,94.5)
grid (97.3,99.1)  (954,98.6)  (99.3,99.8)
pill (87.3,97.3)  (78.8,94.8)  (80.2,96.0)
transistor  (81.5,77.6) (80,0,79.3) (76.2,73.4)
metal nut ~ (87.1,96.8)  (73.7,92.3)  (91.5,97.7)
screw  (65.6,84.2)  (77.690.1)  (76.8,90.9)
toothbrush ~ (89.4,96.1)  (90.6,96.6)  (86.9,94.6)
zipper  (83.7,95.6)  (845953)  (94.598.5)
tile (80.5,93.4)  (99.5,99.8)  (88.9,96.5)
wood  (95.698.6)  (89.897.2)  (95.0,98.5)
mean  (85.9,93.7)  (86.2,93.7)  (88.0,94.2)
Table 3: Fine-grained AD performance

(AUROC and AP) for MVTec Contrast

dataset.

5 Fine-grained Anomaly Detection Performance

In this section, we report the performance of three competitive methods (WinCLIP [3],

AnomalyCLIP [6] and ours) on each subset of MVTec and VisA, under all four kinds of

distribution shifts in Table 2-9.
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Objects WinCLIP ~ AnomalyCLIP Ours Objects WinCLIP  AnomalyCLIP Ours

carpet  (97.699.3)  (89.1,96.7)  (98.8,99.6) carpet  (99.1,07.8)  (93.7.982)  (99.9,99.9)
bottle  (93.7.98.1)  (93398.0)  (93.9.98.2) bottle  (96.7.99.0)  (91.097.5)  (94.4,983)
hazelnut  (84.4,92.1)  (84.0,92.4)  (90.4952)  hazelnut (92.8,96.3)  (87.9.93.4)  (90.4,95.1)
leather (1.0,1.0) (99.9,1.0) (1.0,1.0) leather  (99.9,1.0)  (99.599.8)  (99.9.1.0)
cable  (67.2.81.1)  (80.3,882)  (82.3,88.4) cable  (78.1,85.6)  (61.574.1)  (80.8,86.4)
capsule  (623,88.0)  (85.496.6)  (76.0,94.0)  capsule  (66.0,89.6)  (66.590.2)  (79.0,95.2)
grid (98.5,99.6)  (85.4,95.0)  (98.8.99.6) grid (96.4,98.7)  (85.9.94.8)  (96.5.98.9)
pill (77.3942)  (77.094.6)  (75.4,93.8) pill (69.4.92.6)  (60.4,89.5)  (64.6,91.0)
transistor  (85.7.84.4)  (80.1,78.6)  (80.8,78.3)  tramsistor  (74.9.72.2)  (68.7.60.1)  (73.0,71.5)
metal nut ~ (93.498.5)  (77.7.93.6)  (74.593.5) metalnut  (89.0.97.4)  (74.7.92.8)  (82.1,95.8)
screw  (65.1,86.2)  (69.5,85.6)  (85.9.95.2) screw  (655,84.0)  (68.5,84.3)  (71.1,88.6)
toothbrush  (89.7,96.2)  (83.6,90.2)  (80.3,92.6) toothbrush (96.198.7)  (79.2,92.7)  (91.4,96.9)
zipper  (90.697.5)  (88.4,96.8)  (92.3,97.9) zipper  (94.698.6)  (825952)  (94.7.98.4)
tile (99.7,99.9)  (98.8,99.6)  (99.9.1.0) tile (99.4,99.8)  (99.0,99.6)  (99.9.1.0)
wood  (97.599.2)  (98.9.99.7)  (97.8,99.4) wood  (96.698.9)  (96599.0)  (97.2,99.1)

mean  (86.8.943)  (86.1,93.0)  (88.5,95.1) mean  (87.694.1)  (81.090.7)  (87.6,94.3)

Table 4: Fine-grained AD performance Table 5: Fine-grained AD performance
(AUROC and AP) for MVTec Defocus (AUROC and AP) for MVTec Gaussian
Blur dataset. Noise dataset.

Objects WinCLIP  AnomalyCLIP Ours Objects WinCLIP  AnomalyCLIP Ours

candle (92.4,92.7) (75.2,76.7) (93.6,93.1)  candle (87.2,89.1) (82.9,81.8) (83.4,85.6)
capsules (75.4,85.1) (78.4,87.0) (76.1,85.1)  capsules (63.1,78.7) (76.6,85.3) (65,8,79.9)
cashew (80.2,91.2) (72.8,87.3) (78.5,90.1)  cashew (89.2,95.3) (73.7,38.4) (87.2,94.0)
chewinggum (72.1,87.5) (86.5,93.7) (78.4,89.8) chewinggum  (87.7,94.7) (87.3,94.3) (89.2,95.2)
fryum (72.2,86.0) (92.2,96.5) (84.4,92.4)  fryum (69.6,85.4) (85.9,93.6) (89.1,95.0)
macaronil  (72.4,68.9) (74.6,72.3) (73.6,70.9) macaronil  (67.7,69.5) (71.4,73.4) (74.2,76.1)
macaroni2  (62.5,62.1) (60.0,60.9) (66.1,68.1) macaroni2  (59.2,59.2) (59.4,56.4) (62.5,63.6)

pebl (60.4,64.7)  (65.6,69.1)  (59.4,67.5)  pcbl (624,675)  (70.1,74.0)  (58.4,66.2)
pcb2 (39.843.1)  (70.3,70.9)  (39.5433)  pcb2 (60.0,57.4)  (58.4,58.3)  (58.3,58.4)
pcb3 (57.2,57.4)  (69.0.72.3)  (60.3,63.6)  pcb3 (66.4,70.9)  (52.553.1)  (67.0,70.2)

pcb4 (69.9,68.2) (89.7,89.3) (68.7,66.4) pcb4 (71.2,75.1) (91.3,92.5) (80.0,80.8)
pipe fryum  (59.8,78.3) (89.0,94.7) (90.9,95.9) pipe fryum  (82.2,91.5) (90.0,95.0) (95.3,97.8)

mean (67.9.73.8)  (76.9.80.9)  (72.577.2)  mean (722,77.9)  (75.0,78.8)  (75.9.80.2)

Table 6: Fine-grained AD performance Table 7: Fine-grained AD performance
(AUROC and AP) for VisA Brightness (AUROC and AP) for VisA Contrast
dataset. dataset.

Objects WinCLIP  AnomalyCLIP Ours Objects WinCLIP  AnomalyCLIP Ours

candle (96.0,96.5)  (74.8774.5)  (96.296.5) candle (90.2,91.0)  (84.0,865)  (91.392.1)
capsules  (81.1,88.8)  (81.687.9)  (83.590.1) capsules  (82.7.90.0)  (80.0,87.5)  (78.4,87.1)
cashew  (922.96.6)  (90.7,959)  (83.692.4) cashew  (90.295.6)  (72.8.87.5)  (89.7.95.)
chewinggum (92.4,96.9)  (95.898.1)  (93.3,97.3) chewinggum (92.4,96.6)  (84.8,93.5)  (91.9,96.5)
fryum (71.6,85.6)  (88.7.94.7)  (83.592.5) fryum (75.0,86.5)  (90.695.9)  (88.8,94.8)
macaronil  (75.2,70.6)  (79.3,79.1)  (73.2,69.8) macaronil  (82.0,824)  (81.6,81.2)  (82.4,82.8)
macaroni2  (62.9,64.4)  (64.2,61.2)  (63.7,66.5) macaroni2  (622,64.7)  (55.3,55.0)  (60.8,63.2)

pebl (71.1,71.3)  (83.3.85.9)  (49.3,57.8)  pcbl (66.1,67.3)  (764,71.3)  (46.2,53.8)
pcb2 (384.41.6)  (47.749.8)  (47.1485)  pch2 (46.9.46.0)  (62.8,62.9)  (60.4,56.5)
pcb3 (62.2.634)  (65.671.6)  (70.7744)  pcb3 (59.2,59.2)  (55.5,60.9)  (72.0,75.2)

peb4 (80.4,79.0)  (93.393.6)  (82.4,84.3)  pcb4 (72.1,69.0)  (93.6942)  (84.6,84.5)
pipe fryum  (56.5,76.0)  (91.9,96.1)  (86.9.93.9) pipe fryum  (73.1,86.4)  (95.197.4)  (94.8,97.6)

mean (73.3,71.5) (79.7,82.4) (76.1,80.3) mean (74.3,77.9) (77.7,81.6) (78.4,81.6)

Table 8: Fine-grained AD performance Table 9: Fine-grained AD performance
(AUROC and AP) for VisA Defocus Blur (AUROC and AP) for VisA Gaussian
dataset. Noise dataset.
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