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Abstract

Recently, there has been a rise in the development of self-supervised methodologies
that facilitate denoising directly on real-world images without relying on clean image ref-
erences. Existing self-supervised methods primarily focus on developing techniques for
breaking the spatial correlation inherent in real-world noise. However, the inconsistent
visibility observed in real-world noisy images, which deviates from that encountered
in synthetic noisy images, has yet to be taken into account. In this paper, we propose
a new perspective for self-supervised denoising on real-world noisy images, separately
and jointly learning both visible and invisible noise using a single blind-spot network. To
achieve this objective, a noise visibility map is estimated without relying on any ground
truth or reference for the noise level, to direct the network towards focusing on the re-
gions that exhibit similar visual performance using different strategies. Extensive ex-
periments have been conducted to validate the superiority of our method over existing
self-supervised denoisers from both quantitative and visual comparisons.

1 Introduction
Image denoising, a crucial task in the field of low-level image processing, aims to recover
valuable image structures from noisy observations during the process of noise reduction,
resulting in high-quality clear images for downstream tasks such as classification, semantic
segmentation, and target identification [25, 41, 42].

With the rapid development of deep learning techniques, learning-based methods have
made remarkable progress in comparison to non-learning approaches [5, 11, 13, 36] used in
earlier periods. Learning-based approaches initially adopt a supervised manner that require
clean-noisy pairs for training [27, 28, 37, 48, 49, 50]. However, this methodology is suitable
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Figure 1: The visibility of noise in the lighter regions of an individual image is reduced in
real-world scenarios, whereas this peculiarity does not hold true for synthetic noisy images
(generated by adding AWGN to clean images from the SIDD validation dataset).

for synthetic noise removal but falls short in real-world denoising scenarios, due to the ne-
cessity of gathering clean-noisy image pairs from strictly controlled research environments,
which can be time-consuming and labor-intensive.

To mitigate the need for extensive aligned datasets, various approaches have been devel-
oped by leveraging unpaired noisy-clean images to train the denoisers in an unsupervised
manner [6, 7, 16, 19, 43]. However, the performance of those methods is still limited due to
the intricate nature of modeling real-world noise distributions.

Recently, self-supervised approaches have emerged that enable denoising directly on
noisy images without the need for clean image references. The most representative meth-
ods rely on blind-spot networks (BSNs), which utilize intricately designed masking schemes
enabling the neural network to predict the masked pixels from neighboring noisy ones [17,
29, 32, 44]. However, unlike synthetic denoising, real-world noise removal using BSN typ-
ically requires the implementation of techniques aimed at breaking the spatial correlation
inherent in real-world noise. The AP-BSN [23], one of the pioneering work that adopts a
pixel-shuffle down-sampling (PD) scheme to partially break spatial noise correlation, forms
the fundamental basis for diverse subsequent approaches [15, 20, 31, 40]. However, the
disparity between real-world and synthetic noisy images extends beyond the spatial noise
correlation, which have not been widely concerned.

Synthetic noisy images are generated by overlaying the clean images with randomly
sampled signals from a predetermined probability distribution, followed by normalizing each
pixel value within the standard range. Therefore, the noise is clearly visible across all regions
within an individual image, displaying consistent characteristics. However, for real-world
images, it may vary within an individual image; e.g., noise is often less visible in the lightest
regions [10, 35], where a tonal response curve superimposed on saturation reduces contrast
and noisy signals are clipped during the ADC and quantization processes, hence noise [18],
as shown in Fig. 1. Besides, such inconsistency can also be observed from the noise visibility
(NV) map estimated by our approach. Herein-after, all NV maps are visualized with certain
normalization and by calculating the average across three channels.

Therefore, although the skill such as PD is able to partly disrupt the spatial correlation of
real-world noise, the visual variability of noise within a real-world noisy image persists even
when PD is employed. However, existing approaches employ the strategy of treating these
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spatially varying noise as equal, which may result in interference during network learning.
Existing networks often lack the ability to effectively eliminate such visually changing noise
during noise learning, and instead tend to learn to remove them as a compromise; e.g., they
tend to eliminate the larger but less visible noise when the more visible noise occupies a small
percentage, while leaving behind partly visible noise and creating fragmented artifacts.

In this research, we propose a novel perspective for self-supervised denoising employing
BSN with single noisy images, taking into account the spatially inconsistent visibility of
noise in real-world scenarios. Concretely, to identify the regions affected by either visible
or invisible noise, we develop a multi-path module to estimate a noise visibility (NV) map
without depending on any ground truth or reference for the noise level. With the assistance
of NV map, we adopt different strategies on areas affected by visible or invisible noise to
direct the BSN denoiser toward focusing on regions that exhibit similar visual performance.
In addition, rather than training multiple networks, both visible and less visible noise are
jointly learnt using a single BSN network, by attaching distinct significance to each of them.
Finally, extensive experiments have been conducted to evaluate the proposed framework,
which validate that our approach outperforms current self-supervised denoisers in terms of
both quantitative metrics and visual comparisons. Our main contributions are outlined.

1. We propose a novel perspective for self-supervised denoising on real-world noisy im-
ages, i.e., separately and jointly learning both visible and invisible noise using a single
BSN, using different strategies to direct the network towards focusing on each part.

2. Given the region-correlated and structured features of real-world noise, a multi-path
module has been developed to serve as a guiding mechanism for effectively separating
regions affected by either visible or invisible noise, without relying on any ground
truth (GT) or reference indicating the level of noise.

3. We propose different strategies to guide the network in targeting distinct regions for
denoising, while simultaneously preserving the details that are prone to being mistak-
enly identified as noise. From experiments, our method shows state-of-the-art perfor-
mance in the domain of self-supervised real-world image denoising.

2 Related Work
Denoising techniques have their roots from non-learning approaches, which can be catego-
rized as either filter-based [5, 11, 38] or model-driven methods [2, 13, 36]. Over the past
decade, the advent of deep learning technology has brought about significant performance
enhancements in comparison with non-learning approaches.
Supervised Image Denoising: Supervised denoising methods were initially developed for
additive white Gaussian noise (AWGN) removal, by employing a CNN network with batch
normalization and residual learning [48]. Then, many advanced network-based denoisers
with intricate architectures have been proposed subsequently [27, 28, 37, 49, 50]. How-
ever, the models trained with AWGN exhibit limited generalization capability owing to the
inherent domain discrepancy between real-world and synthetic noise.

To mitigate this problem, CBDNet[14] employed a synthesis of Poisson-Gaussian noise
and simulated its application through the in-camera ISP model. In addition, for solving real-
world denoising problem, several methods train the network directly on real-world noisy-
clean pairs in a supervised manner [9, 21, 45, 46]. However, obtaining properly aligned
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noisy-clean pairs of real images asks for a significant amount of human labor and may not
always be feasible in real-world scenarios.
Unpaired Image Denoising: Considering that the ground truth of the noisy image is usually
unavailable, several approaches sought to generate unpaired noisy-clean images for training.
Most of these approaches aimed to simulate realistic noise [6, 7, 16, 19, 43], for example, the
approach named GCBD [7] utilized a generative adversarial network (GAN)[12] for training
a generator capable of matching the actual noise distribution found in the plain regions of
noisy images. However, their performance remains constrained by the intricate nature of
modeling real-world noise distributions.
Self-supervised Denoising for Synthetic Noise: One of the most prominent methods for
self-supervised denoising is Noise2Noise [24], which employs a neural network trained on
paired images of the same noisy target to predict the clean signal. However, capturing mul-
tiple noisy observations per scene continues to pose a significant challenge. Thus, various
methodologies have been developed to tackle this issue by generating paired images from a
single noisy observation through a series of sampling and transfer techniques [17, 29, 32, 44].

In addition to utilizing paired images for learning purposes, BSNs are employed to ac-
quire self-supervised models from only noisy images with masking techniques[4, 22, 34, 39].
However, the theoretical assurance of those BSNs does not apply to real-world scenarios
since that the noise should satisfy the assumption of pixel-wise independence.
Self-supervised Denoising for Real-world Noise: As a pioneer approach in training a
self-supervised denoiser directly on real-world noisy images, CVF-SID disentangles the
noise components by employing a cyclic multi-variate function, but it assumes spatially-
uncorrelated noise, which does not align with the real distribution of noise [30]. The BSN
denoisers, which have attracted significant attention for synthetic noise removal, cannot be
directly applied to the real-world denoising tasks, primarily due to the violation of the as-
sumption of pixel-wise independence of noise.

Then, AP-BSN, a brilliant approach that proposes pixel-shuffle down-sampling scheme
to break spatial noise correlation has received the most attention [23]. Formally, its network
output xo is calculated by

xo = B(y;ωn) := P−1
s (Nb(Ps(y);ωn)), (1)

where y is the noisy input; Nb(·;ωn) denotes the BSN with well-trained parameter ωn; Ps is
the pixel-shuffling operator with a stride factor of s, and P−1

s is its inverse.
A number of approaches have been subsequently developed, building upon the founda-

tion of AP-BSN [15, 20, 31, 40]. SS-BSN[15] directly adopted the asymmetric PD utilized
in AP-BSN and incorporated the extraction of valuable information from non-local self-
similarity. In addition, SS-BSN also introduced an attention module to enhance the training
of BSN, however, it is time-consuming. Given the significant reduction in sampling density
caused by the PD, LG-BPN [40] introduced a densely-sampled module to effectively retain
more information and improve fine structure recovery. Both C-BSN [20] and SDAP [31]
suggested utilizing random sub-sampling schemes to mitigate the artifacts introduced by PD
and enhance denoising performance. However, they offered limited performance gains.

In addition to improving the PD technique, SASL[26] is the work that takes into account
the diverse intricacies involved in denoising across different regions. It introduced a blind-
neighborhood network to offer certain supervision in flat areas and employed a locally aware
network for noise elimination of textured regions. Therefore, including the U-Net denoiser,
SASL consists of three individually trained networks. The independent learning of flat and
textured regions leads to the presence of inconsistent fine structure in the final outcomes.

Citation
Citation
{Cai, Hu, Wang, Zhang, Pfister, and Wei} 2021

Citation
Citation
{Chen, Chen, Chao, and Yang} 2018

Citation
Citation
{Hong, Fan, Jiang, and Feng} 2020

Citation
Citation
{Jang, Lee, Son, and Lee} 2021

Citation
Citation
{Wu, Liu, Cao, Ren, and Zuo} 2020

Citation
Citation
{Chen, Chen, Chao, and Yang} 2018

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Lehtinen, Munkberg, Hasselgren, Laine, Karras, Aittala, and Aila} 2018

Citation
Citation
{Huang, Li, Jia, Lu, and Liu} 2021

Citation
Citation
{Moran, Schmidt, Zhong, and Coady} 2020

Citation
Citation
{Pang, Zheng, Quan, and Ji} 2021

Citation
Citation
{Xu, Huang, Cheng, Liu, Zhu, Xu, and Shao} 2020

Citation
Citation
{Batson and Royer} 2019

Citation
Citation
{Krull, Buchholz, and Jug} 2019

Citation
Citation
{Quan, Chen, Pang, and Ji} 2020

Citation
Citation
{Wang, Liu, Li, and Han} 2022

Citation
Citation
{Neshatavar, Yavartanoo, Son, and Lee} 2022

Citation
Citation
{Lee, Son, and Lee} 2022

Citation
Citation
{Han and Yu} 2023

Citation
Citation
{Jang, Lee, Park, Kim, and Cho} 2023

Citation
Citation
{Pan, Liu, Liao, Cao, and Ren} 2023

Citation
Citation
{Wang, Fu, Liu, and Zhang} 2023

Citation
Citation
{Han and Yu} 2023

Citation
Citation
{Wang, Fu, Liu, and Zhang} 2023

Citation
Citation
{Jang, Lee, Park, Kim, and Cho} 2023

Citation
Citation
{Pan, Liu, Liao, Cao, and Ren} 2023

Citation
Citation
{Li, Zhang, Liu, Feng, Wang, Lei, and Zuo} 2023



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 5

3 Method

3.1 Blind Estimation of NV Map
In addition to the essential characteristic of spatial correlation, the visibility of real noise
also exhibits inconsistency within an individual image, due to variations in luminance range
across different regions [10] (not limited to the brightest areas). To comprehensively investi-
gate the noise linked to different visibility levels, we propose constructing a network module
of NV map estimation to roughly discern and distinguish them.

To address the issue of inconsistent noise in relation to varying luminance ranges, we
in this paper propose a module incorporating a multi-path network for estimating an NV
map without relying on any ground truth or reference of the noise level. For every path
of the network, we learn from the previous work [43] to build a network that contains five
1× 1 convolution layers of 32 channels, while deploying the ReLU nonlinear mapping for
all convolution layers except the last one. Although, the 1× 1 convolution has been pro-
posed for learning signal-dependent noise in a multivariate heteroscedastic Gaussian model,
it faces challenges in capturing the structural texture of real-world noise, particularly when
the fluctuations occur over relatively long distances. In other words, using 1× 1 convolu-
tion only may struggle to handle real-world noise that is generally not fine-grained. Besides,
the visibility of real-world noise is generally consistent in regions with comparable lumi-
nance and chroma. However, the single-path module lacks the ability to accurately simulate
such region-related characteristic. To better simulate the spatially correlated and structured
real-world noise, we propose a 3-paths network that integrates the individual estimation of
single-paths (see Fig. 2 framed in grey).

It should be emphasized that our proposed module serves as a blind estimator of the NV
map, which presents a greater challenge compared to previous work that relies on ground
truth [14, 21] or any other noise level reference [6, 7, 19, 43]. Due to the inherent structural
texture of real-world noise, it becomes challenging to distinguish them from the underlying
image structure. Therefore, accurately estimating real-world noise in a blind manner may
pose the risk of underestimating the visible noise while simultaneously misjudging the im-
age structure as noise. Taking this into consideration, we in the following sub-section will
carefully construct a single BSN network for removing both visible and less visible (and
underestimated) noise, while simultaneously preserving intricate image details.

3.2 Visible and Invisible Denoising
We in this paper desire to optimize a single BSN denoiser by selectively targeting one spe-
cific type of noise with a particular visibility level at any given time. This concept draws
inspiration from the practice of self-supervised denoising, which involves using multiple
synthetic noisy images with diverse levels of noise [24]. Nevertheless, in the context of real-
world denoising, the separate learning of distinct noise visibility is not as optimal as it is in
synthetic scenarios.

After estimating the NV map (denoted as mnv) by our multi-path module (denoted as
M(y; µm) with the parameter µm to be learned), i.e.,

mnv =M(y; µm), (2)

it is inevitable that M(y; µm) encompasses a combination of partly visible noise and image
structures. Thus, we firstly generate a network target y−i to separate the estimated visible
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Figure 2: The integrated flow diagram of our proposed framework.

noise from the remaining noise, i.e.,

y−i = y−M◦
i (y; µm), (3)

where M◦
i (y; ·) :=M(y; ·) ◦ z, with the Hadamard product ◦; besides, z ∽ N (0,1). Then,

we desire to train a BSN denoiser by minimizing the loss between y−i and the BSN output of
y to pay more focus on less visible and underestimated noise learning.

Given that the estimated NV map inevitably contain image structures, we desire to em-
ploy an ℓ1-norm-based term to account for the sparsity of the differences caused by details
removal. Moreover, the total variation (TV) regularization [36] (denoted as ∥ · ∥tv) is also
used to enhance the edge-preserving capability of the output. Thus, the loss function for
learning less visible noise is set as

Li = ∥xi −y−i ∥1 +λ∥xi∥tv, (4)

where xi is the output of the BSN denoiser B(y;ωb) with to-be-learned ωb; while λ is a
positive constant to balance the two objective terms.

Taking y−i as the target is also beneficial to the PD process of B(·; ·). Since the NV
map is likely to contain image structures, removing them will remain relatively flat regions
for denoiser learning, thereby mitigating artifacts caused by the shuffling procedure while
emphasizing the network’s focus on denoising itself. However, a negative side is that the de-
noiser trained exclusively on invisible noise may possess inadequate efficacy in eliminating
much more visible noise and yields too-smoothed outcomes.

On the contrary, in addition to the less visible and underestimated noise, we also de-
velop a different line to enhance the focus of the BSN denoiser on effectively learning high
visibility noise. Specifically, we use a noisier input y+v and a target y−v with lower noise, i.e.,

y+v = y+αM◦
v(y; µm), y−v = y−βM◦

v(y; µm), (5)

where α > 1 and β ∈ (0,1), focusing primarily on regions with high visible noise by ampli-
fying the discrepancies between the input and the target in such areas while keeping other
regions unchanged.
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Dataset
Self-supervised learning

CVF-SID[30] AP-BSN[23] SDAP[31] SS-BSN[15] C-BSN[20] SASL[26] Ours

SIDD 34.43/0.912 35.97/0.925 36.54/0.919 36.73/0.923 36.82/0.934 37.41/0.934 37.16/0.936

DND 36.31/0.923 38.09/0.937 37.71/0.928 37.72/0.928 38.45/0.939 38.58/0.936 38.74/0.943

Table 1: Quantitative comparison of PSNR and SSIM on SIDD and DND datasets is con-
ducted, Red and blue colors are employed to represent the best and second-best outcomes
among the self-supervised methods.

Moreover, since the sharp image structures are also learnt in the NV map, we use a square
root operation on the estimated NV map to enhance the significance of details within it, i.e.,
M◦

v(y; ·) = sqrt(M(y; ·))◦ z. By minimizing the loss for learning visible noise, i.e.,

Lv = ∥xv −y−v ∥1, (6)

where xv represents the output of B(y+v ;ωb), we expect the BSN denoiser to remove visible
noise while simultaneously preserving meaningful details of the image.

Finally, the well-trained parameters of both the blind estimation module of NV map and
the BSN-based denoising module, i.e., µm and ωb are obtained by jointly optimizing:

minµm,ωb Li + γLv, (7)

with a balance parameter γ > 0. Furthermore, the architecture of our BSN denoiser B(·;ωb)
is the same with the one utilized in [23], employing PD5 for training while PD2 for testing.
It is worth noting that the effectiveness of our approach lies in the separately and jointly
learning of visible and invisible noise within a single real-world noisy image, which will be
verified through the subsequent experiments. For clarity, we provide the flow chart of our
proposed method in Fig. 2.

4 Experiments

4.1 Experimental Details
Real-world datasets. To evaluate the effectiveness of our proposed approach, all experi-
ments are conducted on two publicly concerned datasets, i.e., the Smartphone Image De-
noising Dataset (SIDD)[1] and Darmstadt Noise Dataset (DND)[33] for training and testing
real-world sRGB camera noise removal. We utilize the SIDD medium dataset for model
training, which comprises 320 pairs of aligned real noisy-clean images. Each noisy image is
captured multiple times, and the average image is served as the reference for GT. However,
being a self-supervised method, only noisy images are used as the training samples. Further-
more, the validation and benchmark datasets of SIDD are respectively adopted for validation
and testing which both contain 1280 image blocks of size 256×256.

The DND dataset comprises image patches of size 512×512 which is cropped from 50
high-resolution test images. Since DND does not provide specific datasets for training and
validation, we use the whole image patches for training in a fully self-supervised manner.
As the benchmark dataset does not provide GT, the peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) of the test results can be obtained through the
online submission system available on the SIDD and DND benchmark websites.
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Figure 3: Visual comparisons of our method with other self-supervised SOTAs for denoising
sRGB images on the SIDD Validation dataset.

Implementation Details. We employ a batch size of 32 and a patch size of 120× 120 to
train our proposed approach. The Adam method is utilized as our optimizer with an initial
learning rate of 3e−4. Then, the learning rate is reduced by a factor of 10 for every 9 epochs
during our training for a total of 21 epochs. We set λ to 0.1 for the TV regularization of our
module of learning invisible noise. Additionally, we have chosen α = 1.8 and β = 0.6 as the
parameters for our visible denoising module, while setting the balance parameter γ to 1. In
addition, all the experiments are conducted on the NVIDIA RTX 3090 in PyTorch 1.9.

4.2 Comparison with State-of-the-arts
We compare our approach against state-of-the-art methods, including traditional non-learning
based methods (i.e., BM3D [11] and WNNM [13]), supervised learning methods with syn-
thetic noisy-clean pairs (i.e., DnCNN [48] and Zhou et al. [49]) and with real-world noisy-
clean pairs (i.e., TNRD [8], CBDNet [14], RIDNet [3], AINDNet [21], VDN [45], DANet
[46] and MIRNet[47]), unpaired learning approaches for real-world image denoising (i.e.,
GCBD [7], C2N [19] and D-BSN [43]), with quantitative comparisons detailed in the sup-
plementary materials. Furthermore, we place special emphasis on the comparisons with self-
supervised learning approaches for real-world image denoising, including CVF-SID[30],
AP-BSN[23], SDAP[31], SS-BSN[15], C-BSN[20] and SASL[26], as shown in Table 1.

In Table 1, we present the PSNR/SSIM results of various state-of-the-art (SOTA) denois-
ing methods on both the SIDD Benchmark and DND Benchmark. Specifically, the values of
all the SOTAs are posted from the corresponding papers that can be cross-verified with the
benchmark websites. These values are obtained by respectively using SIDD medium dataset
and DND benchmark for training purposes.

when compared to the self-supervised approaches, our method outperforms other SOTA
methods in all aspects, except for the slightly lower PSNR of SIDD in comparison to SASL.
However, the results in relation to the SSIM index clearly demonstrate the effectiveness of
our proposed method on the SIDD benchmark, The superiority of our method can also be
noticed from the visual comparisons in Fig. 3. Our approach clearly demonstrates its ca-
pability in generating denoised images with enhanced sharpness, outperforming both SASL
and C-BSD which are considered as more competitive methods. However, it is worth noting
that these alternative approaches exhibit certain drawbacks such as the presence of irregular
artifacts and a loss of detail clarity.

Furthermore, both SDAP and SS-BSN exhibit better results than other approaches, which
is on par with the visual quality of our results. However, the split technique of SDAP is more
likely to produce excessively smoothed results. On the other hand, SS-BSN exhibits elevated
model complexity due to the incorporation of an attention module, whereas its training time
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Figure 4: The top row shows the visual comparisons with other self-supervised SOTAs for
denoising sRGB images on the DND benchmark dataset, while the bottom row represents
the corresponding edge maps computed using the same way.

is prolonged. Specifically, the training time required for a single epoch on the SIDD medium
dataset is about 0.7 hours in our framework. However, SS-BSN commends approximately
1.2 hours, surpassing the time taken by our method considerably. In addition, the total num-
ber of epochs for our approach and SS-BSN are comparable (i.e., 21 vs 20). Therefore, to
achieve the results presented in Tab. 1, SS-BSN requires significantly longer cost of training
in comparison with our approach. The qualitative comparison of the DND benchmark testing
dataset is illustrated in Fig. 4. Our results exhibit superior cleanliness and enhanced preser-
vation of details when compared to other state-of-the-art approaches, which also verifies the
superiority of our approach.

5 Ablation Study

We perform extensive ablation studies on the SIDD validation and benchmark datasets to
analyze the effectiveness of our proposed method. This includes investigating the impact
of the path number for NV map estimation, examining the effectiveness of the visible and
invisible learning modules, evaluating the TV regularization parameter λ , and assessing the
sensitivity of parameters α and β in the learning module of visible noise Besides, details of
the ablation experiments on hyperparameters λ , α , and β are in the supplementary materials.

5.1 Path Number of NV Map Estimation

As depicted in Fig. 5 (a), we used a range of one to four paths for investigate the impact of the
path number of our NV map estimation module on the SIDD validation dataset. When utiliz-
ing one to three noise estimation paths, PSNR demonstrates a gradual improvement, while
SSIM exhibits a more pronounced increase, reaching its peak with the utilization of three
paths of network. Nevertheless, the continuous increase in the number of paths brings about
a significant decline in denoising effectiveness, which is attributed to the over-estimation of
the noise level.

The utilization of one-path noise estimation network is more prevalent in advance [14,
21, 43]. However, its effectiveness is limited in the blind estimation scenarios encountered
in real-world image denoising. Furthermore, we provide a visual illustration to present the
disparity in the NV map between the one-path network and our three-paths estimation. It is
clearly observed that our NV map is more consistent with the visual perception of the noisy
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Figure 5: (a)Ablation study of the path number of M(y; µm) for the blind estimation of NV
map. (b)Visual comparisons of the visible/invisible learning flow.

image, exhibiting greater consistency with GT reference that shows the disparity between
the noisy image and the clean reference provided in the SIDD validation dataset.

5.2 Effects of Visible/Invisible Learning
We conduct ablation studies to examine the impacts of visible and invisible learning flows
in our method. By setting γ = 0, that is, the BSN denoiser is exclusively trained by utilizing
invisible noise. Under this scenario, the well-trained BSN denoiser will lose its ability to
effectively eliminate visible noise, bringing about the presence of uncleaned artifacts in the
denoised outcomes, as presented in the first column of Fig. 5(b). On the contrary, when the
invisible noise is not taken into account during training, that is, γ = ∞, the BSN denoiser
B(·;ωb) solely relies on visible noise, which causes an excessive smoothing effect and blur-
riness in the resulting denoised images, as shown in the last column of Fig. 5(b).

From the quantitative comparisons, the PSNR metric indicates a relatively small differ-
ence between the cases when γ = 0 (PSNR = 36.95) and γ = ∞ (PSNR = 36.96). However,
the SSIM metric reveals a more pronounced disparity, with SSIM values of 0.931 for γ = ∞

and 0.934 for γ = ∞, which better aligns with the observed visual effects. Whether through
qualitative or quantitative comparisons, it becomes evident that the significance lies in sepa-
rately addressing both visible and invisible noise within a single BSN denoiser.

6 Conclusion
In this research, we propose a novel perspective for self-supervised denoising by utilizing a
BSN with single noisy images, taking into consideration the spatially inconsistent visibility
of noise in real-world scenarios. In order to identify the regions affected by either visible
or invisible noise, we develop a multi-path module to blindly estimate an NV map, which
directs the BSN network towards focusing on the regions of similar level of noise. Exten-
sive experiments have validated that our proposed method performs favorably against SOTA
methods on real-world cases. It should be noted that all current methods yield results with
certain artifacts (e.g., as depicted in the second row of Fig. 3) caused by color mixture with
real-world noise, which will be addressed in our future research.
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