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In this supplementary document, we report qualitative results that demonstrate the
effects of variance-based interpolation and ID-NMS. Additionally, we provide additional
quantitative comparisons between real and synthetic datasets on face recognition (FR)
benchmarks. We also include a report on the training settings and configurations used for
the FR models.

A Effect of Variance-Based Interpolation

In the main thesis, we demonstrate that variance-based interpolation improves FR
performance by improving three key aspects of FR datasets: ID uniqueness, ID
preservation, and intra-class diversity. This section presents a qualitative comparison of
fictional IDs generated with and without variance-based interpolation. fig. 1 illustrates the
qualitative distinction between samples of fictional IDs generated with and without
variance-based interpolation.
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Figure 1: Comparison of samples without and with
variance-based interpolation. The real IDs in the
first column are the endpoints of interpolations.
For each pair of real IDs, the upper ID has a greater
average variance than the below one. Variance-
based interpolation helps prevent the fictional IDs
from being too similar to the real IDs with high
variance.

When the fictional ID is generated
without considering variances, the
fictional ID may be too similar to
a real ID with higher variance than
the other real ID. On the other hand,
variance-based interpolation enables
the fictional ID to be distinct from the
real IDs which are the interpolation
endpoints. This observation aligns
with the findings in table 3 of the main
thesis, indicating that when fictional
IDs are interpolated without variance,
their uniqueness is degraded compared
to when variance-based interpolation is
used. Thus, employing variance-based
interpolation contributes to minimizing
redundancy in the generation of a
fictional ID.

Discarded fictional IDsReal IDs Real IDs

Figure 2: Samples of discarded fictional IDs. Samples are generated based on the
interpolations between features of the real IDs on their left and right sides. According to
the ID-NMS, IDs are discarded when it is too similar to existing IDs or already selected IDs.

B Qualitative Results of ID-NMS
This section presents a qualitative comparison of fictional IDs that are discarded and
selected according to ID-NMS. According to ID-NMS, it discards IDs when they are too
similar to existing IDs or already selected IDs. Fig. 2 depicts samples of discarded fictional
IDs. Samples are generated based on the interpolations between features of the real IDs on
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Figure 3: Samples of selected fictional IDs. Samples are generated based on the
interpolations between features of the real IDs on their left and right sides. The mechanism
of ID-NMS leads to an outcome where the selected IDs exhibit enhanced uniqueness, that
are distinctly different from the interpolation endpoints.

their left and right sides. As can be seen in Fig. 2, discarded fictional IDs resemble the
interpolation endpoints, as observed empirically. In contrast, the selected fictional IDs
depicted in Fig. 3 exhibit a lesser degree of resemblance to the interpolation endpoints.

C Comparison of Real and Synthetic Datasets
The performance of FR models is observed to deteriorate when trained on synthetic datasets,
in comparison to real datasets, due to the existing domain gap between them [2, 7]. In this
section, we present an additional comparative analysis of real and synthetic datasets. The
evaluation encompasses both qualitative and quantitative perspectives.

Real/Synth Authenticity # of imgs LFW CFP-FP AgeDB CFP-FF CALFW CPLFW Avg. Gap to Real

Synth.
Real ID 20 96.20 70.87 77.68 94.74 85.83 71.63 82.83 6.96

40 97.58 72.04 79.83 96.00 87.20 72.73 84.23 5.18

Fict. ID 20 95.18 69.71 74.63 93.56 67.97 83.93 80.83 9.61
40 96.75 70.34 78.20 93.94 69.23 84.18 82.11 7.90

Real - 20 97.88 80.29 86.25 97.90 90.78 78.52 88.60 0.00

Table 1: Verification accuracy (%) comparison on benchmark sets of real and synthetic
datasets generated by DiffFR. “# of imgs” is the average number of images per ID. The
number of IDs is fixed at 10,177 which is that of the original dataset, CelebA.

C.1 FR Performance
We maintain the number of IDs at 10,177, which is that of the original dataset, CelebA while
manipulating the number of images per ID and the authenticity of the identifiers by varying
them between real and fictional. As can be seen in Table 1, a noticeable performance gap
continues to exist between real and synthetic datasets.

Within synthetic datasets, those containing real IDs exhibit better performance in
comparison to those with fictional IDs. The average performance on validation sets reveals
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that the synthetic dataset, with 20 images per ID, exhibits an accuracy of 82.83%. In
comparison, the real dataset performs significantly better, with an accuracy of 88.60%.
However, when the number of images in the synthetic dataset is increased to 40, it achieves
a comparable accuracy of 97.58% on LFW, while the real dataset achieves an accuracy of
97.88%. Additionally, in contrast to the other benchmark datasets, the use of fictional IDs
yields better performance in CPLFW.

In line with the consistent observation, an increase in the number of images per ID
positively impacts the overall performance. When the number of images per ID is 20, the
synthetic dataset with real IDs demonstrates better average performance on validation sets,
showing an accuracy of 82.83%, which exceeds that of the synthetic dataset employing
fictional IDs, which achieves an accuracy of 80.83%.

Real images Synthetic images

Figure 4: Comparison of real and synthetic images. Images in each row have the same
ID. In comparison to real images, synthetic images exhibit comparable photo-realism and
competitive diversity.

C.2 Qualitative Results

Fig. 4 provides a comparison of real and synthetic images. Within each row of the figure,
the images share identical IDs. Synthetic images demonstrate comparable levels of photo-
realism and competitive diversity in comparison to real images.
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D Experimental Settings for FR
For training the FR, we employ a modified ResNet50 modified in [3] with CosFace [9] loss
function. Optimizer SGD [5, 6, 8] is applied with a momentum of 0.9 and a weight decay
of 5e-4. One NVIDIA Tesla A100 GPUs is used in the training with 1,024 batch size. The
learning rate is initially set to 0.1 and decreased by 10 at 10, 16, 21, and 25 epochs and
training terminates at 30 epochs. During training, we only use flip data augmentation. To
ensure fairness, another pre-trained FR model from Insightface [4] with a modified ResNet50
backbone [3] trained on Glint360k [1], is employed for measuring the metrics.
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