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Abstract

In this study, we explore an alternative approach to enhance contrastive text-image-
3D alignment in the absence of textual descriptions for 3D objects. We introduce two
unsupervised methods, I2I and (I2L)2, which leverage CLIP knowledge about textual
and 2D data to compute the neural perceived similarity between two 3D samples. We
employ the proposed methods to mine 3D hard negatives, establishing a multimodal
contrastive pipeline with hard negative weighting via a custom loss function. We train on
different configurations of the proposed hard negative mining approach, and we evaluate
the accuracy of our models in 3D classification and on the cross-modal retrieval bench-
mark, testing image-to-shape and shape-to-image retrieval. Results demonstrate that our
approach, even without explicit text alignment, achieves comparable or superior perfor-
mance on zero-shot and standard 3D classification, while significantly improving both
image-to-shape and shape-to-image retrieval compared to previous methods.
Our code is available at: https://github.com/mortorit/No-Captions-No-Problem.

1 Introduction
In recent years, multimodal feature alignment gathered increasing interest in the scientific
community. This was primarily sparked by the introduction of CLIP (Contrastive Language-
Image Pretraining) [16], which successfully aligns images and text through contrastive mul-
timodal learning, obtaining impressive results in many downstream tasks.

Extending CLIP to 3D data is however a challenging task, primarily due to the scarcity
of well-annotated text-2D-3D triplets required. Indeed, although image-3D datasets are rela-
tively easy to obtain, for instance through rendering, there is a lack of data with well-curated
and structurally meaningful descriptions for 3D models.

Initial efforts to address this issue aligned images and 3D objects, either without text
or with template text prompts filled with category names or metadata-derived descriptions.
More recent works have leveraged Large Multimodal Models (LMMs) capable of processing
images to generate image captions, thereby generating text descriptions for the 3D object.
However, these generated texts often lack descriptiveness and discriminativeness, and suffer
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Figure 1: Overview of our proposed approach. We first precompute 3D samples similarities
through our proposed neural similarity metrics, then we use the obtained scores to enhance
the contrastive training with hard negatives.

from inherent LMM biases like counting inability and a propensity to fill in missing infor-
mation. They also encounter problems associated with image-based queries, including the
incorporation of information not obtainable from the point cloud model, such as colours,
textures, and materials in the 3D model.

In light of the limitations associated with LMM-generated prompts, this study explores
an alternative approach to enhance contrastive text-2D-3D alignment in the absence of la-
belled textual descriptions for 3D objects. Specifically, we propose to leverage CLIP knowl-
edge about textual and 2D data to compute similarities between point cloud models, then
exploit those similarities to mine hard negative samples, enhancing the contrastive training.
We introduce two unsupervised approaches for computing the neural-perceived similarity
between 3D samples, I2I and (I2L)2. The first computes 3D similarities by only leveraging
object views and the CLIP image encoder. The second method we propose leverages instead
both images and LLM-generated texts, while addressing both the limitations of image-based
approaches and the low-descriptiveness of image-captioning generated prompts. To this end,
we transpose the 3D shape similarity problem into an image-text similarity space, where each
object view is characterized by its similarity vector in relation to a set of fixed and detail-rich
LMM-generated category prompts that do not refer to color, texture, or material.

We establish a text-image-3D contrastive pipeline that uses precomputed 3D similari-
ties to perform hard negative sampling, and we instantiate it in different configurations by
employing the proposed similarities. We rigorously test the obtained models following eval-
uation benchmarks and community protocols for text-image-3D contrastive learning on mul-
tiple datasets, both real and synthetic. We assess the macro-structure of the latent space by
testing on 3D classification (both zero-shot and fine-tuned). We evaluate instead the fine-
grained understanding of intra-category details and the alignment of 3D and images by a
cross-modal retrieval benchmark, testing image-to-shape and shape-to-image retrieval. Our
experiments demonstrate that our approach achieves superior or comparable performance
on 3D classification, while obtaining a significant improvement in both image-to-shape and
shape-to-image retrieval compared to state-of-the-art methods.
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2 Related Works

Over the past decade, Contrastive Representation Learning (CRL) [7] has emerged as a ro-
bust self-supervised learning framework. It builds a well-structured representation space by
learning to discern similar and dissimilar samples. The advent of InfoNCE loss [13, 21]
and its application in CLIP (Contrastive Language Image Pretraining) [16] has further pro-
pelled CRL’s popularity. CLIP, aligning images and text in the latent space of two separate
modality encoders, has shown remarkable results in various downstream tasks, making it a
key component in models like LLaVA [11] and DALLE-2 [17]. Subsequent research has
enhanced the CLIP methodology with soft labels [4], sigmoid loss [27], data filtering, and
hard negatives [15], leading to improved text-image alignment.

Building on the success of CLIP with text-image data, researchers have expanded this
approach to other modalities, including audio [6], video [24], and even imu, depth, and heat
maps [5]. The extension to 3D arrived with initial works obtaining the alignment of vox-
els and images [19], followed by more efficient 3D representations. Early works aligning
point clouds with other modalities, such as PointCLIP [28] and its successor, PointCLIP
v2 [29], use the pretrained vision encoder from CLIP to process point clouds by project-
ing them onto multi-view depth maps. CLIP2Point [8] also trains on depth maps projected
from point clouds, but introduces a fully trainable depth encoder and an intra-modality loss
for aligning different depth maps of the same 3D sample, thereby enhancing invariance to
view changes. ULIP [25] presents and successfully trains a pure text-image-3D point cloud
model, introducing a point cloud encoder instead of using projected depth maps, and out-
performs previous works in all benchmarks. After ULIP, as with CLIP, research in this field
has begun to explore ways to improve the model’s ability to align concepts from 3D with
other modalities. ReCON [14] achieves this by combining a generative paradigm along with
the contrastive loss to ensure the latent space retains more information about the 3D shape.
While effective, this approach is less parameter-efficient, as it employs an additional genera-
tive branch and module. ULIP 2 [26] maintains efficiency by focusing instead on generating
more informative text captions. Indeed, while ULIP used metadata and class categories to
create text labels for image-text-3D triplets, ULIP 2 employs BLIP-2 [10] to pre-generate
per-sample text captions for 2D views of the training set objects. This allows for a more
informative contrastive training between text and shape embeddings. However, the use of
a general-purpose LMM means that the captions inherit both the strengths and limitations
of the model. For instance, by analyzing the generated texts (which are publicly available),
it is evident that the model lacks the specialization required to describe relevant structural
elements of the considered objects. Furthermore, the captions often describe the object in
a generic manner, sometimes hallucinating scenes biased toward the object’s function or
background color. Another challenge is the reference to color, textures, and materials in the
captions, which are not visible from the point cloud. We further discuss and exemplify these
aspects of the ULIP-2 captions in the supplementary.

In light of the aforementioned issues with previous models, the fundamental problem for
this work is to remain parameter-efficient by not adding more models/modules, while still
incorporating additional knowledge to achieve a more informative 3D contrastive training.
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3 Method

3.1 Preliminaries: Contrastive Training and Hard Negatives

The objective of contrastive multimodal training, as proposed in CLIP [16], is to accurately
match the same sample from different modalities among all the samples in a batch. Formally,
the model takes a batch of N coupled samples (xm1 ,xm2) from different modalities m1 and m2
e.g. couples of images and their corresponding captions. Two separate modality encoders
Em1 and Em2 process the batch producing L2-normalized modality embeddings for the batch,
em1 and em2 , each with shape (N,F) with F being the number of latent features. The objective
of the model is that of matching, through cosine similarity, corresponding samples from
different modalities, thus aligning the corresponding embeddings in the latent space. The
contrastive self-supervised loss is then defined as:

L(m1,m2) =
1
2
Lm1→m2 +

1
2
Lm2→m1 , Lmi→mj =− 1

N

N

∑
k=1

log
exp
(

ek
mi
·ek

m j/τ

)
N
∑

s=1
exp
(

ek
mi
·es

m j/τ

) , (1)

with · being the inner product, τ a learnable temperature parameter stored as a log-parameterized
scalar, and the apices indicize elements in the batch.

If all samples in the batch are vastly different, it becomes easier for the model to match
samples, resulting in the model learning less detailed features. Conversely, if the batch con-
tains similar samples, the model faces a challenge in discriminating the correct one, thereby
forcing it to learn more detailed features. These samples are named as hard negatives, and
their mining and sampling is a well-studied topic in classic representation learning [12, 20].
More recently, it has been applied in the context of contrastive learning, proving success-
ful in aligning 2D images [18] and text-2D [15]. Yet, it remains unexplored in text-2D-3D
contrastive representation learning, where the first step is to address hard negative mining, a
non-trivial task with 3D data. In the following, we approach this problem by defining neural
similarities to extract hard samples for a given 3D object in a dataset.

3.2 Similarities for 3D Hard Negative Mining: I2I, (I2L)2

In preliminary experiments, reported in the supplementary, we tested with established 3D
similarity metrics like Chamfer Distance (CD) and Earth Mover’s Distance (EMD). How-
ever, these metrics did not yield satisfactory outcomes. While they excel at overall cor-
respondence assessment, they tend to overlook finer details, favoring denser regions [3].
Moreover, they are not context-aware, thus they are not able to extract and compare context-
relevant features which are paramount for the extraction of semantically challenging nega-
tives. These limitations mainly impact the matching of local geometric structures, such as
small or thin elements, holes and curvatures, all of which are crucial features in describing
and distinguishing 3D samples. We propose then to build neural similarities capable of cap-
turing relevant context-aware features by exploiting the semantically rich CLIP latent space.
We introduce two similarity measures, depicted in Figure 2, built upon the publicly available
OpenCLIP [9] model in its ViT-B-32 version.
I2I - Image to Image 3D similarity: Our first proposed strategy primarily utilizes images,

based on the assumption that 2D views provide sufficient information for the 3D object. For
each 3D sample xi

3D, we consider its set of R rendered views {vi,r}R
r=0 from a set of fixed
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Figure 2: Our proposed similarity metrics for 3D hard negative mining.

camera poses for all samples. We employ the pretrained OpenCLIP image encoder Ei to
compute the image embedding ek,r

image for each view. With a sufficient number of views, these
embeddings serve as neural descriptors of the 3D object, capturing features from all sides.
Given these descriptors for any pair of point cloud samples (x1

3D,x
2
3D), we compute the I2I

3D similarity as:

3D-SimI2I(x1
3D,x

2
3D) = f

(
1
V

V

∑
r=1

e1,r
image · e

2,r
image

)
, f (x) =

(x+1)
2

(2)

which, considering L2-normalized embeddings, is the mean cosine similarity between cor-
responding views of the two objects, shifted to [0,1] with f (x). As demonstrated in Fig-
ure 3, this method effectively matches similar items by leveraging the fact that while CLIP
is trained to align images and text, it also implicitly learns to align images containing similar
concepts and features. However, in Figure 3 we also show that this approach still encoun-
ters the same color-texture-material issue discussed in Section 2, where objects with similar
texture result more similar than structurally similar samples.

(I2L)2 - (Image to Landmarks) to (Image to Landmarks) 3D similarity: We propose
a second strategy with two aims: (1) solving the colour-texture-material limitation and (2)
leveraging both the image and text knowledge of CLIP derived from its large scale training.
First, we need to define how to efficiently use text to describe 3D objects, so that we can
leverage CLIP text encoder to our advantage. However, as mentioned in Section 2, using
LMMs for captioning suffers from limitations in understanding structural features, resulting
in not enough-detailed annotations or even the hallucination of false information, adversely
affecting the accurate multimodal alignment. We propose instead to focus on fewer but useful
and detail-rich texts. To this end, we use LMMs not to generate captions for each view, but
to generate a small amount of detailed texts that describe hypothetical objects from a given
category, covering its subsets and different instances for structural features. In particular, we
leverage GPT-4 [1] to generate a set of L texts per category c with following prompt:

In the context of a 3D objects dataset, generate L text descriptions for the cat-
egory "c" <optional if metadata present: containing "METADATA">. De-
scribe one object per text, focusing on its relevant structural features and details.
The list should cover a high variety of settings and types for each feature. Do
not mention texture, materials, or color.
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Figure 3: 3D-to-3D retrieval using our similarities on a chair sample from ShapeNet dataset.

Where METADATA, if available, contains possible subsets or information on objects in the
given category. With the above prompt, we generate L texts per category in our training set
and compute their text embeddings {ec,l

text}L
l=0 through OpenCLIP text encoder Et . We refer

to the generated texts and their embedding, respectively, as text landmarks and landmarks,
as they will act as such in building 3D descriptors. Specifically, given a 3D object xi

3D from
category c and its views {vi,r}R

r=0, we build descriptors di,r with dimension L for each view
r by measuring its cosine similarity with respect to all of the landmarks for that category:

di,r[l] = ei,r
image · e

c,l
text , l ∈ 1...L (3)

Each element of the descriptor is then a value between −1 and 1 measuring the similarity of
the view with respect to one of the landmarks. When L < F , this process builds descriptors
that live in a sparser and lower-dimensional per-category space, using the generated texts as
landmarks (and thus the name) in the latent space of CLIP. Given two 3D objects (x1

3D,x
2
3D)

and their descriptors (d1,d2), each with shape (R,L), we can now compute (I2L)2 shape sim-
ilarity leveraging the mean Euclidean distance between descriptors of corresponding views:

3D-Sim(I2L)2(x1
3D,x

2
3D) = g

(
1
V

V

∑
r=1

√
L

∑
l=1

(d1,r[l]−d2,r[l])2

)
, g(x) =

1
1+ x

(4)

where g(x) maps distances to similarities values between 0 and 1. Despite the increased
complexity in its construction, this descriptor offers several advantages. It enables the uti-
lization of CLIP language knowledge alongside visual knowledge, and it does this efficiently
by working with fewer, yet more detailed and meaningful texts. This approach also shifts
the problem to a lower-dimensional representation space controlled by text landmarks, mit-
igating biases related to color, texture, and material. As we show in Figure 3, the (I2L)2

similarity succeeds when the image-based similarity falls short, correctly preferring struc-
turally similar samples over samples with similar texture/color.

Lastly, in Figure 3 we show that averaging I2I and (I2L)2 similarities is beneficial, al-
lowing us to benefit from CLIP visual features of the I2I method while also mitigating image
biases and enforcing structural coherence between similar samples thanks to (I2L)2.
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3.3 Contrastive training with Hard Negative Sampling
Inspired by, successful methods with 2D and text-2D data [7, 15], we apply an importance
sampling approach to increase the weight of harder samples in a batch. We leverage the
similarity functions defined in the previous section to define a reweighted contrastive loss to
align 2D and 3D data. We define this loss as:

L(2D,3D)-HN =− 1
2N

N

∑
i=1

log
exp(ei

image·ei
shape/τ)

N
∑

s=1
wi,s exp(ei

image·es
shape/τ)

− 1
2N

N

∑
s=1

log
exp(es

image·es
shape/τ)

N
∑

i=1
ws,i exp(ei

image·es
shape/τ)

, (5)

where weights w for a given batch are defined as:

wi,s =
(N −1)sim(xi

3D,x
s
3D)

∑
k ̸=i

sim(xi
3D,x

k
3D)

, ws,i =
(N −1)sim(xi

3D,x
s
3D)

∑
k ̸=s

sim(xk
3D,x

s
3D)

, (6)

and sim(·, ·) is any positive similarity function between 3D samples. For each sample in a
batch, the weights consider the mean similarity of all its negative samples. Typically, for
each sample, easy negatives significantly outnumber hard negatives within a batch, causing
the mean similarity to align with easy negative values. Consequently, easy negatives receive
weights close to 1, while harder negatives—characterized by notably higher similarity—are
upweighted in the loss function.

As similarity sim(·, ·) in Equation (6) we can employ both 3D-SimI2I and 3D-Sim(I2L)2 .
To enhance training efficiency, we precompute and store similarity values. Notably, we
defined the (I2L)2 similarity exclusively for samples within the same category. This choice
leverages the observation that hard negatives often belong to the same category, sharing both
concept and appearance. This observation allows us to significantly reduce the computational
cost and memory requirements for similarity precomputation from D2 (where D is dataset
size), to ∑c∈C |c|2 with |c| representing the number of samples in category c. We then define
sim(x,y) as 3D-Sim(x,y) when the samples are from the same category, while we set it to a
constant α otherwise, as to not obtain zero weights in Equation (6).

4 Experiments

4.1 Model and training details
We employ the pretrained OpenCLIP model, which we freeze, alongside a trainable point
cloud encoder. To avoid architectural biases, we adopt the more efficient PointNeXt config-
uration from the state-of-the-art ULIP-2 [26], thus exclusively validating the novel training
method. We also train on the same ShapeNet [2] subset, comprising 55 categories of 3D
objects, each represented by 30 equally spaced views and a point cloud sampled from the
mesh surface. We normalize point clouds to the unit sphere and apply random translations,
rotations, and noise augmentation. The training process utilizes the loss defined in Equation
(2), with the AdamW optimizer and a cosine annealing schedule featuring linear warmup.
The initial learning rate is set to 10−7 and gets to 10−3 after 30 warmup epochs.

We train models using the proposed 3D-SimI2I , 3D-Sim(I2L)2 for hard negatives. Addi-
tionally, observing the benefits of combining the two similarities, we also train a third model
denoted as 3D-SimAVG. However, instead of directly averaging the similarities, we compute
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Zero-Shot 3D Classification Standard 3D Classification
ModelNet40 ScanObjectNN ModelNet40 ScanObjectNN

Model #P (M) top-1 top-5 top-1 top-5 top-1 top-1
PointCLIP 0 20.2 43.7 15.4 33.9 92.0 89.1
CLIP2Point 86 49.4 66.5 23.32 57.5 94.2 90.6
ULIP-PointNet++ 1.5 58.4 78.2 49.9 78.8 93.5 89.7
ULIP-PointBERT 22.1 60.4 84.0 48.5 79.9 94.1 86.4
ReCon 43.6 61.7 83.6 30.5 63.2 94.7 91.3
ULIP 2-PointNeXt 1.4 64.5 81.3 - - - 89.5
ULIP 2-PointBERT 22.1 66.4 87.7 - - - 86.7
Ours-PointNeXt-I2I 1.4 64.2 87.1 53.1 82.4 93.2 90.1
Ours-PointNeXt-(I2L)2 1.4 63.7 86.9 54.8 83.9 94.3 88.9
Ours-PointNeXt-AVG 1.4 65.9 87.0 55.7 82.6 93.7 90.2

Table 1: 3D classification results. Our best model is underlined, the best overall is in bold.

weights for both 3D-SimI2I , 3D-Sim(I2L)2 and average them, as this is more robust to differ-
ences in similarity scale between the two employed similarities. For all experiments, we set
α = 0.25 and L = 128, and we ablate the latter in Section 5.

4.2 Experimental results
We adopt the evaluation pipeline of previous works [25, 26, 28, 29] by testing our models on
zero-shot 3D classification and standard 3D classification on both ModelNet40 [23] and the
hardest set from ScanObjectNN [22] (PB_T50_RS). Moreover, to evaluate in a more fine-
grained manner the learned multimodal space, we also introduce experiments on cross-modal
retrieval. For ULIP-2, we report only available results as the checkpoints for ShapeNet-
pretrained models have not been released.

Zero-Shot 3D Classification: Thanks to the multimodal alignment, zero-shot 3D classi-
fication can directly be performed by computing text embeddings for the sentences "a point
cloud of a <c>" for each category c, then predicting the one with the maximum similarity
with respect to the point cloud embedding of the considered sample. We report top-1 accu-
racy and top-5 accuracy results in Table 1. On ModelNet40, our models outperform most
previous models despite the lower number of parameters, being on par or better with cor-
responding ULIP-2 PointNeXt architectures. Our AVG model surpasses ReCon, which has
30x more parameters and is also competitive with the best ULIP-2 PointBERT architecture,
which has 15x more parameters. On ScanObjectNN, our model outperforms all baselines
and, based on ULIP-2 ModelNet improvements with respect to ULIP, we expect it to be
comparable to ULIP 2 models too. Note that our models do not train on directly aligning 3D
and text data, and thus the performance of our model also shows that, as suggested in Image-
bind [5], the alignment of all couples of modalities is not needed, as aligning two modalities
suffices to indirectly align the others.

Standard 3D Classification: We adopt the community evaluation protocol on 3D classi-
fication by concatenating a linear head to the point cloud encoder and finetuning it on classi-
fication. Results, reported in Table 1 show that our models obtain competitive performances
with respect to state-of-the art models and similar to analogous PointNeXt architectures.
This shows that our models learn a meaningful space which serves as a good initialization
for fine-tuning on other 3D datasets, obtaining competitive results even with a much lower
number of parameters.

Cross-modal retrieval While in ULIP [25] authors visually experiment cross-model
retrieval with few images from Caltech101 dataset, which for fairness we also test and re-
port in Figure 4, a quantitative analysis is not presented. Unlike 3D classification, which
focuses solely on category prediction, cross-modal retrieval assesses the model’s ability to
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Query Images
from Caltech101

Top Retrieved
Point Clouds 

from ModelNet40

Figure 4: Example of 2D-to-3D cross modal retrieval using our model. Images are from
Caltech101, point clouds are from ModelNet40 and are ranked in order of cosine similarity.

align concepts and fine-grained features across different modalities. To evaluate this aspect,
we conduct zero-shot 2D-to-3D and 3D-to-2D retrieval experiments on the Pix3D dataset—a
real-world 2D-3D dataset featuring common objects. Notably, Pix3D includes masks for
background removal, and we evaluate both the simpler no-background and the more complex
background versions. As for classification, we report top-1 and top-5 accuracy in Table 2.
Our results demonstrate that our models consistently outperform previous approaches in both
2D-to-3D and 3D-to-2D retrieval tasks. The AVG model excels across most scenarios, except
for image-to-shape retrieval with background, where our I2I model exhibits superior perfor-
mance. Specifically, we achieve an average (top-1,top-5) improvement of (5.2%,3.95%) on
test without backgrounds and (4.65%,4.3%) tests with backgrounds. These findings high-
light the effectiveness of our approach, showing that the multimodal alignment benefits from
our hard negative strategy also at a finer-grained level, leading to a better ability in discrimi-
nating correct shapes from images and vice versa.

No Background Background
Image-to-Shape Shape-to-Image Image-to-Shape Shape-to-Image

Model #P (M) top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
PointCLIP 0 13.6 47.3 10.1 42.5 9.9 41.2 7.4 34.8
CLIP2Point 86 20.4 63.2 16.5 53.7 15.0 50.1 10.9 45.2
ULIP-PointNet++ 1.5 23.9 64.6 17.2 55.9 15.1 49.2 11.4 47.3
ULIP-PointBERT 22.1 25.1 65.8 17.5 55.6 14.8 51.4 12.0 47.5
ReCon 43.6 31.4 72.8 22.8 63.1 20.7 56.4 19.6 53.2
Ours-PointNeXt-I2I 1.4 35.2 74.4 27.7 68.1 26.3 60.4 22.8 56.6
Ours-PointNeXt-(I2L)2 1.4 33.3 74.4 26.8 66.8 25.3 59.9 22.2 55.5
Ours-PointNeXt-AVG 1.4 35.6 75.1 29.0 68.7 25.9 60.1 23.3 57.8

Table 2: Cross modal retrieval on Pix3D. The best model overall is highlighted in bold.

5 Ablation Study

L
Zero
Shot

Fine
Tuned

Retrieval

32 52.5 93.1 16.4
64 58.4 92.9 20.1
128 63.7 94.0 23.8
256 63.9 93.7 24.1
512 63.9 94.1 23.9
Table 3: Ablation on L value.

We experiment with different numbers of landmarks per
category, and we report top-1 accuracy results in Table 3,
on ModelNet40 for zero-shot and finetuned 3D classifica-
tion and on Pix3D with background for retrieval, averaged
over 2D-to-3D and 3D-to-2D, while we report extended
results in the supplementary. For this study, we use the
(I2L)2 model to test the effect of landmarks without the
contribution of I2I similarity. As we increase the number
of generated texts, their diversity decreases and they tend
to repetition, becoming unuseful in discriminating differ-
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ent features and structural settings. Consequently, we opt for L = 128, as it allows a balance
between efficiency and performance without compromising accuracy.

6 Conclusions

In this study, we presented an effective method to enhance the 3D alignment to the CLIP
model by using CLIP itself, through its visual and textual knowledge. We propose two sim-
ilarity metrics, I2I and (I2L)2, leveraging CLIP to compare 3D samples and extract 3D hard
negatives, and use these to build an effective hard negative weighted contrastive pipeline.
With (I2L)2, we also address the challenges of 2D biases (texture, materials, colours) in
comparing 3D shapes and we leverage LLM-generated texts in an innovative way, mitigat-
ing issues with LMM-generated captions from previous methods. We evaluate our models on
zero-shot and finetuned 3D classification, obtaining results comparable or better than previ-
ous approaches. Lastly, we evaluate the fine-grained multimodal understanding of our model
with cross-modal retrieval, where our models surpass all the previous approaches.
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