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1 Contents of the supplementary materials
We discuss the following aspects in the supplementary:

• We describe the dataset details, split ratio, and dataset statistics for the Open-Set Multi-
Target Domain Adaptation (OSMT-DA) in Section 2 (Table 1).

• In Section 3, we provide the ablation study on the effect of the entropy regularization
parameter and separate prompts, as shown in Figures 1 and 2, respectively.

• In Section 4, we present comprehensive results for the three datasets used in our work.
Tables 2, 3, and 4 report the performance on the Office-31, Office-Home, and Mini-
DomainNet datasets, respectively, using OS, OS*, and UNK as evaluation metrics.
We also provide a comparison between the t-SNE visualizations from our proposed
method, COSMo, and state-of-the-art methods on the Office-Home dataset, shown in
Figure 3.

• Finally, in Table 5, we list the notations used in designing and training the architecture.

2 Dataset Statistics
Table 1 presents the distribution of known and unknown samples across different source do-
mains for three datasets: Office, Office-Home, and Mini-DomainNet. It details the counts
of known and unknown samples for each domain within these datasets, providing a clear
overview of the data variability and composition used in our analysis.
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Table 1: Statistics for each dataset depicting the number of known and unknown samples for
each source domain

Dataset Source Domain # known samples # unknown samples

Office-31
Amazon (A) 389 904
DSLR (D) 1059 2553

Webcam (W) 978 2337

Office-Home

Art (A) 3396 9765
Clipart (C) 3023 8200
Product (P) 3062 8087

Real (R) 2936 8295

Mini-DomainNet

Clipart (C) 55334 71108
Painting (P) 50467 63176

Real (R) 30524 44263
Sketch (S) 54322 66241

To assess the efficacy of our approach in open-set Multi-Target domain adaptation, we
utilize three established datasets, each offering distinct challenges and settings. The Office-
Home dataset [9] consists of 15,500 images across four distinct domains: Art, Clip Art,
Product, and Real World. It encompasses 65 categories depicting a variety of objects typ-
ically found in office and home environments. The Office-31 dataset [5] includes 4,652
images spanning three domains: Amazon, DSLR, and Webcam, with each domain featuring
31 categories related to office supplies. Lastly, the Mini-DomainNet, a subset of the larger
DomainNet [3] dataset, provides a broad spectrum of images across four domains—Clipart,
Painting, Real, and Sketch—comprising 126 classes. Dataset split (|Ck|/|Cu|) for Office-31,
Office-Home and Mini-DomainNet is taken as 10/21, 15/50 and 60/66 respectively.

3 Ablations
Effect of entropy regularisation parameter (λ ): Figure 1 depicts the effect of varying the
entropy regularization parameter (λ ) on the model’s metrics: OS*, UNK, and HOS. Optimal
performance is achieved at λ = 1, suggesting that a balanced entropy regularization is cru-
cial for enhancing model accuracy.

0.2 0.5 1 1.2 1.5
Entropy Reg Parameter ( )

70

75

80

85

90

95

Ac
cu

ra
cy

OS*
UNK
HOS

Figure 1: Effect of varying the entropy regularization parameter λ on the Office-31 dataset.
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Impact of having separate Pkwn and Punk: Figure 2 provides a detailed analysis of the
effects of using separate Pkwn and Punk on the performance metrics: OS*, UNK, and HOS,
across different source domains in the Office-31 dataset. The results demonstrate an increase
in HOS scores (except on the Amazon domain) when separate prompts are implemented. A
notable increase is observed in the Unknown accuracy, implying that separate prompts are
able to handle the unknown classes well.
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Figure 2: Impact of having separate known prompts Pkwn and unknown prompts Punk. Here
’N’ represents no separate prompt, and ’Y’ represents that the separate prompts are used.

4 Comprehensive Results
t-SNE visualization: In Figure 3, we visualize and compare the t-SNE embeddings gener-
ated from the text encoder of our proposed COSMo for both known and unknown classes
with other methods on the Office-Home dataset on the proposed setting. COSMo is able
to segregate the known and unknown classes better. Tables 2, 3, and 4 depict the compre-
hensive results for the proposed setting on Office-31, Office-Home and Mini-DomainNet
datasets, respectively. The results are obtained with both vision backbones: ResNet-50 [2]
and ViT-B/16 [1], and all the metrics are reported (OS*, UNK and HOS).

(a) OSDA-BP (b) DANCE (c) COSMo (Ours)

Figure 3: t-SNE visualizations on the Office-Home Dataset with Amazon as the source
domain. Coloured dots represent known classes in the source domain, while black triangles
denote target domain samples. For COSMo, text embeddings are used, while features from
the penultimate layer are used for the other models.

Detailed results of Table 1 (Main paper): Here, we discuss the detailed results of our
proposed COSMo and compare them with the referred literature.
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Table 2 presents detailed results on the Office-31 dataset. Our proposed COSMo outperforms
other models across all three domains using the ViT-B/16 architecture for the OSMTDA
task. With the ResNet 50 architecture, COSMo surpasses other models in two out of three
domains. Additionally, COSMo achieves the highest HOS score on the Amazon domain and
the lowest on the DSLR domain.

Table 2: Results on the Office-31 (10/21) dataset. Best in bold, second best underlined.

Method Source Domain RN50 ViT-B/16

OS* UNK HOS OS* UNK HOS

CLIP [4]
Amazon 92.53 25.22 39.64 95.24 28.43 43.79
DSLR 89.34 31.53 46.61 91.2 25.58 39.95

Webcam 89.26 30.72 45.71 90.74 25.33 39.61

OSDA-BP [6]
Amazon 92.66 25.11 39.51 90.24 78.43 83.92
DSLR 83.97 55.23 66.63 77.78 71.68 74.60

Webcam 80.70 51.82 63.11 77.00 69.70 73.17

DANCE [7]
Amazon 96.02 64.05 76.84 87.82 85.18 86.48
DSLR 78.12 83.00 80.49 78.37 96.12 86.34

Webcam 76.75 82.16 79.36 80.84 95.98 87.76

AD-CLIP [8]
Amazon 93.26 25.55 40.11 100 22.68 36.97
DSLR 92.3 22.76 36.51 79.73 35.17 48.81

Webcam 90.46 29.65 44.66 92.07 19.6 32.32

COSMo
Amazon 74.58 81.64 77.95 90.64 94.36 92.46
DSLR 82.93 78.69 80.76 87.05 89.82 88.41

Webcam 84.47 76.94 80.53 87.75 90.59 89.15

Similar to the results on the Office-31 dataset, Table 3 presents a detailed comparison of our
proposed COSMo model with state-of-the-art methods on the Office-Home dataset. COSMo
consistently outperforms nearly all other models across various domains, with the exception
of the Art domain when using the ViT-B/16 architecture. The Art domain poses a greater
challenge compared to the other domains.

Table 3: Results on Office-Home (15/50) Dataset. Best in bold, second best underlined.

Method Source Domain RN50 ViT-B/16

OS* UNK HOS OS* UNK HOS

CLIP [4]

Art 84.15 48.00 61.14 92.08 46.06 61.76
Clipart 92.21 45.28 60.73 95.39 45.01 61.16
Product 81.44 54.62 65.38 90.64 53.44 67.24

Real World 79.65 51.09 62.25 90.16 49.03 63.52

OSDA-BP [6]

Art 75.36 29.88 42.8 42.44 75.7 54.39
Clipart 71.34 49.06 58.14 35.13 31.13 33.01
Product 67.71 41.82 51.71 54.77 57.23 55.97

Real World 68.14 43.39 53.02 48.32 69.33 56.95

DANCE [7]

Art 67.91 81.08 73.91 79.63 82.83 81.2
Clipart 65.14 84.49 73.56 84.38 86.5 85.42
Product 58.8 85.73 69.76 72.57 85.68 78.58

Real World 62.04 81.82 70.57 77.5 81.13 79.28

AD-CLIP [8]

Art 84.41 47.43 60.74 92.64 38.15 54.04
Clipart 92.3 34.5 50.23 94.02 33.05 48.91
Product 82.11 44.64 57.84 90.52 34.23 49.67

Real World 80.38 42.36 55.48 92.16 31.26 46.69

COSMo

Art 79.31 74.74 76.96 90.25 73.4 80.96
Clipart 80.59 81.99 81.28 88.92 84.79 86.8
Product 74.8 70.42 72.54 80.78 84.13 82.42

Real World 72.27 75.47 73.83 84.65 79.44 81.97
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The Mini-DomainNet dataset presents a significant challenge for domain adaptation due to
its large number of unknown classes and the relatively high number of known and unknown
samples. Despite these difficulties, our model achieves nearly 80% HOS score, the high-
est among other models, across the four domains, as shown in Table 4. Regardless of the
architecture used, COSMo consistently attains the best HOS score across all four domains.
Notably, we observe the highest HOS score on the sketch domain and the lowest on the real
domain.

Table 4: Results on Mini-Domain Net (60/66) Dataset. Best in bold, second best underlined.

Method Source Domain RN50 ViT-B/16

OS* UNK HOS OS* UNK HOS

CLIP [4]

Clipart 80.47 64.59 71.67 89.29 65.81 75.78
Painting 82.15 63.1 71.38 90.97 64.78 75.67

Real 68.87 68.19 68.53 84.74 63.19 72.39
Sketch 81.07 64.26 71.69 89.67 65.44 75.66

OSDA-BP [6]

Clipart 38.85 71.14 50.26 37.43 46.01 41.27
Painting 38.58 73.25 50.54 48.3 57.28 52.41

Real 25.73 73.54 38.12 41.65 59.08 48.86
Sketch 38.76 70.35 49.98 40.95 35.09 37.79

DANCE [7]

Clipart 26.46 94.82 41.37 56.85 91.96 70.26
Painting 31.7 94.29 47.45 76.07 87.29 81.29

Real 14.39 97.12 25.06 61.97 89.85 73.35
Sketch 28.6 96.27 44.1 60.46 94.85 73.84

AD-CLIP [8]

Clipart 83.97 41.93 55.93 91.87 37.4 53.16
Painting 85.38 44.18 58.23 92.98 41.01 56.92

Real 73.5 40.36 52.11 86.12 32.9 47.61
Sketch 83.1 43.67 57.25 91.94 38.1 53.88

COSMo

Clipart 74.38 76.62 75.48 83.08 79.1 81.05
Painting 80.37 72.69 76.34 86.58 81.85 84.15

Real 63.36 77.06 69.54 79.33 79.03 79.18
Sketch 72.75 80.72 76.52 81.08 84.77 82.89

Table 5: Table of Mathematical Terms and Notations
Notation Description

(Xs,Ys) ∈ S Source domain data and labels
Xt Unlabeled data from all target domains combined
q Number of target domains
Cs and Ct Classes in the source and target domains
Ck Known classes from the source domain, Ck =Cs
Cu Unknown classes in the target domain, Cu =Ct \Cs
Ds and Dt Mini-batch from labeled source and unlabelled target domains
Fv and Ft Pre-trained image and text encoder
Bθ (·) Domain-specific bias network
β Domain bias context token, β = Bθ (v)
Pc

k Known class-based prompt for class c
Pc

k, bias Biased known class prompt
Pkwn Cumulative prompt for all known classes
Pu Unknown class-based prompt
Punk Biased unknown class prompt
τ Text features encoded by the text encoder
λ Hyperparameter controlling entropy regularization strength
κlower Lower threshold for confidence in known classes
κupper Upper threshold for confidence in unknown classes
m Length of the context prompt
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