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1 Base Models & Datasets

In this section, we provide a description of self-supervised learning frameworks and datasets
that we used in the experiments. To test our method, we tried to select a diverse set of frame-
works that incorporate different mechanisms to avoid model collapse and follow different
design paradigms.

1.1 Base Models

MoCo V1&V2 [3, 5] is a self-supervised contrastive learning framework that employs a
memory bank to store negative samples. MoCo V2 is an extension of the original MoCo,
which introduces a projection head and stronger data augmentations.
Un-Mix [9] is an image mixture technique with state-of-the-art performance for unsuper-
vised learning, which uses CutMix and Mixup at its core. It smooths decision boundary and
reduces overconfidence in model predictions by introducing an additional mixture term to
the original loss value, which is proportional to the degree of the mixture.
SimCLR [1] is a siamese framework with two branches that uses contrastive loss to attract
positive and repel negative instances using various data augmentations.
BYOL [8] is a self-supervised learning technique that does not use negative pairs. It is
composed of two networks, an online and a target. The task of an online network is to
predict the representations produced by the target network. EMA from the online network is
used to update the weights of the target.
SimSiam [2] The authors examined the effect of the different techniques which are com-
monly used to design siamese frameworks for representation learning. As a result, they
proposed a simple framework with two branches that relies on the stop gradient operation on
one branch and an extra prediction module on the other.
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1.2 Datasets
CIFAR-100 [6] consists of 32×32 images with 100 classes. There are 50,000 train images
and 10,000 test images, 500 and 100 per class, respectively.
Tiny-ImageNet [7] is a dataset containing 64 × 64 colored natural images with 200 classes.
The test set is composed of 10,000 test images, whilst the train contains 500 images per
category, totaling 100,000 images.
ImageNet-1K [4] has images with a size of 224×224. 1,281,167 images span the training
set, with 1K different classes, and the validation set includes 50K images.

2 Training Configurations
In this section we provide hyperparameter settings for:

• Training on CIFAR-100 and Tiny-ImageNet in Table 1.

• Pretraining and linear probing on ImageNet-1K configurations are shown in Table 2.

• Configurations for semi-supervised and supervised fine-tuning on ImageNet-1K are
given in Table 3.

• For object detection and segmentation we use the Detectron2[10] library and follow
the 1× recipe on COCO and standard 24k training protocol on VOC07.

MoCo SimCLR & BYOL SimSiam
hparam value hparam value hparam value

backbone resnet18 backbone resnet18 backbone resnet18
optimizer SGD optimizer Adam optimizer SGD

lr 0.06 lr 0.003/0.002 lr 0.03
batch size 512 batch size 512 batch size 512

opt momentum 0.90 proj layers 2 opt momentum 0.90
epochs 1,000 epochs 1,000 epochs 1,000

weight decay 5e-4 weight decay 5e-4 weight decay 5e-4
embed-dim 128 embed-dim 64/128 embed-dim 128

moco-m 0.99 Adam l2 1e-6 warmup epochs 10
moco-k 4,096 proj dim 1,024 proj layers 2

unmix prob 0.50 unmix prob 0.50 unmix prob 0.50
moco-t 0.10 byol tau 0.99

Table 1: Training settings on CIFAR-100 and Tiny-ImageNet. Slash separated values corre-
spond to CIFAR-100 and Tiny-ImageNet, respectively.

3 Training Loss and Accuracy Curves
In Fig. 1, we present the training loss and k-NN accuracy curves for different base frame-
works trained for 1,000 epochs on CIFAR-100 dataset. MixMask consistently outperforms
baseline on all methods. MixMask has a higher (in case of SimSiam lower because it can
attain the value of -1) training loss than baseline due to the presence of the additional asym-
metric loss term.
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Pretraining Linear probing
hparam value hparam value

backbone resnet50 backbone resnet50
optimizer SGD optimizer SGD

lr 0.03 lr 30
batch size 256 batch size 256

opt momentum 0.90 opt momentum 0.90
lr schedule cosine lr schedule [60, 80]

epochs 200/800 epochs 100
weight decay 0 weight decay 0

moco-dim 128
moco-m 0.999
moco-k 65,536
moco-t 0.2

unmix probability 0.5
mask type block
grid size 8

Table 2: Hyperparameter values for pre-
training and linear probing on ImageNet-
1K. This configuration achieves the highest
score. All experiments are conducted on 4
× NVIDIA A100 SXM4 40GB GPU.

hparam value
backbone resnet50
optimizer SGD

lr stem 0.002/0.002/0.001
lr classifier 0.5/0.5/0.05
batch size 256

opt momentum 0.90
lr schedule [12, 16]

epochs 20
weight decay 0

Table 3: Hyperparameter values for semi-
supervised and supervised finetuning on
ImageNet-1K. Slash separated values corre-
spond to 1%, 10% and 100% percent data
regimes, respectively.
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Figure 1: Training losses (top row) and k-NN evaluation accuracies (bottom row) on CIFAR-
100 for experiments with 1,000 epochs for different self-supervised frameworks. MixMask
(red) outperforms vanilla baseline (blue) on all frameworks by a significant margin.
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Figure 2: Illustration of the different mask patterns with a mask grid size of 8. (a) and (b) are
input images. (c) is the discrete/random mask pattern, and (d) and (e) are mixed images using
this mask. (f) is the blocked mask pattern, and (g) and (h) are mixed images with a blocked
mask. Discrete masking breaks (c) – (e) the completeness of an object which is important for
the contrastive loss because it operates on the global object level. On the other hand, blocked
masking (f) – (h) preserves important global features leading to superior performance.
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4 Illustrations of Different Mask Patterns
We provide additional illustrations for the different mask patterns and images generated by
them. In Fig. 2 illustrations we use mask with grid size 8. All original images are sampled
from ImageNet-1K.
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