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Abstract

The recent progress in self-supervised learning has successfully combined Masked
Image Modeling (MIM) with Siamese Networks, harnessing the strengths of both method-
ologies. Nonetheless, certain challenges persist when integrating conventional erase-
based masking within Siamese ConvNets. Two primary concerns are: (1) The con-
tinuous data processing nature of ConvNets, which doesn’t allow for the exclusion of
non-informative masked regions, leading to reduced training efficiency compared to ViT
architecture; (2) The misalignment between erase-based masking and the contrastive-
based objective, distinguishing it from the MIM technique. To address these challenges,
this work introduces a novel filling-based masking approach, termed MixMask. The pro-
posed method replaces erased areas with content from a different image, effectively coun-
tering the information depletion seen in traditional masking methods. Additionally, we
unveil an adaptive loss function that captures the semantics of the newly patched views,
ensuring seamless integration within the architectural framework. We empirically vali-
date the effectiveness of our approach through comprehensive experiments across various
datasets and application scenarios. The findings underscore our framework’s enhanced
performance in areas such as linear probing, semi-supervised and supervised finetuning,
object detection and segmentation. Notably, our method surpasses the MSCN, establish-
ing MixMask as a more advantageous masking solution for Siamese ConvNets. Our code
and models are publicly available at github.com/kirill-vish/MixMask.

1 Introduction
Self-supervised learning is a popular method for deriving representations from data without
requiring human-labeled annotations. One common approach within this paradigm is the
Siamese Network, characterized by its dual-branch structure. The distance or relationship
between these two branches is typically assessed using similarity loss [7, 15], contrastive
loss [5, 18, 26], or distillation loss [4]. A recent innovation, termed Masked Image Mod-
eling (MIM) [1, 2, 19], has shown promise in enhancing representation learning. To in-
tegrate the strengths of both masked design and Siamese networks, the Masked Siamese
Network (MSN) built on ViT was introduced [1]. Parallelly, convolutional networks such

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Chen and He} 2021

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Avilaprotect unhbox voidb@x protect penalty @M  {}Pires, Guo, Gheshlaghiprotect unhbox voidb@x protect penalty @M  {}Azar, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Oord, Li, and Vinyals} 2018

Citation
Citation
{Caron, Touvron, Misra, J{é}gou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Assran, Caron, Misra, Bojanowski, Bordes, Vincent, Joulin, Rabbat, and Ballas} 2022

Citation
Citation
{Bao, Dong, and Wei} 2021

Citation
Citation
{He, Chen, Xie, Li, Doll{á}r, and Girshick} 2022

Citation
Citation
{Assran, Caron, Misra, Bojanowski, Bordes, Vincent, Joulin, Rabbat, and Ballas} 2022

https://github.com/kirill-vish/MixMask


2 VISHNIAKOV ET AL.: MIXMASK

as ConvNeXt [24] and its V2 iteration [31] have also been making strides, exhibiting strong
performance in both labeled and unlabeled learning contexts, underlining the potential of
ConvNets. A more recent advance is the Masked Siamese ConvNets (MSCN) [20], which is
an extension of MSN but utilizes a ConvNet-based encoder. This method, however, takes the
masking strategy directly from MIM [2, 19], without customizing it for the unique attributes
of Siamese ConvNet. Additionally, both MSN and MSCN lean heavily on the multicrop
strategy, as detailed in [3, 4], to counterbalance performance limitations stemming from the
erasure function. As an example, while MSN produces ten additional perspectives with a fo-
cal mask in each cycle, MSCN creates two supplementary views. This results in an increased
computational load during training.

Generally, erase-based masking works particularly well in tandem with the image patchify
mechanism seen in ViT [12]. This mechanism creates image patches that the encoder pro-
cesses independently. By doing so, masked patches can easily be omitted, subsequently
reducing computational expenses [19]. In contrast, ConvNets employ a continuous data pro-
cessing approach. This is not suitable for omitting masked patches because it would main-
tain the same processing time, even though the masked patches no longer carry significant
semantic value. Another challenge arises from numerous contrastive frameworks employing
embedding loss [5, 18]. This loss is not structured to restore the removed regions but rather
to distinguish between different inputs. Moreover, multiple studies [6, 10] have shown that
contrastive loss tends to capture more general, coarse-grained features. Masking operations
compromise these overarching features, subsequently slowing down a model’s convergence
rate. In contrast, vision transformer-based MIM methods [2, 19] aim to restore the masked
sections by working directly within the pixel domain using a reconstruction loss.

We have pinpointed two primary limitations associated with Masked Siamese ConvNets:
(1) The standard erase-based masking operation impinges upon global features crucial for
the contrastive objective as referred in [6, 10]. Plainly put, conventional masking excises
significant semantic data from the input, and such loss is irretrievable through subsequent
processing. To illustrate, masking 25% of the image means a corresponding 25% information
loss during training, thereby hindering the training’s efficacy. This highlights the pressing
need for a refined masking approach to optimize the learning of representations. (2) The
inherent “symmetric” semantic distance loss in Siamese networks does not adjust for the
shift in semantic distance across varying views of an identically masked image. Notably, the
global semantic essence of an image is altered when random segments are erased. Take, for
example, an image of a dog in the center. The semantics of this image diverge markedly from
a version where distinct portions of the dog are masked and thus hidden. Such uniform loss
configuration has a marginal impact when both branches undergo masking. Nonetheless,
issues arise when solely one branch gets masked. Given that asymmetric Siamese networks,
as proposed in [30], are identified to be superior learners, a more adaptable loss system
utilizing soft distance becomes indispensable to truly capture the semantic gap between the
duo of asymmetric branches in masked Siamese convnets.

To counter the limitations mentioned, we introduce a filling-based masking technique as
an alternative to the erasing method, ensuring that there is no information loss. Rather than
randomly removing regions of an image, we opt to randomly select another image, harness-
ing its pixel values to populate the masked segments. Importantly, in contrast to the discrete
random masking employed in [19], we discovered that a block-wise approach yields supe-
rior results. This method maintains crucial global information, essential for contrastive loss.
Paired with our mask-filling strategy, this block-wise masking effectively replaces blank
spaces with comprehensive viewpoints from other images within a batch. In recognition
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(a)

im2 discrete Im1_mix Im2_mix blocked Im1_mix Im2_mixim1

(b) (c) (d) (e) (f) (g) (h)

Figure 1: Illustration of the different mask patterns with a mask grid size of 8. (a) and (b) are
input images. (c) is the discrete/random mask pattern, and (d) and (e) are mixed images using
this mask. (f) is the blocked mask pattern, and (g) and (h) are mixed images with a blocked
mask. Discrete masking breaks (c) – (e) the completeness of an object which is important for
the contrastive loss because it operates on the global object level. On the other hand, blocked
masking (f) – (h) preserves important global features leading to superior performance.

of the semantic shift post-filling, we have incorporated the asymmetric loss design as de-
tailed in [30]. Our filling-based technique, compared to MSCN’s erase-based strategy, sup-
plants nondescript erased areas with regions that offer richer semantic insights. Notably, this
method does away with the need for multicrops, only demanding one supplementary view
per image, marking a significant efficiency leap over MSN and MSCN that utilize ten and
two cropping pairs respectively. Such invaluable information derived from our filling-based
approach can be harnessed by Siamese networks, amplifying the training representation. Our
ablation studies confirm its superior efficacy for the Masked Siamese ConvNets.

Our proposed approach has been exhaustively validated across the CIFAR-100, Tiny-
ImageNet, and ImageNet-1K datasets and seamlessly incorporated into various Siamese
ConvNets, including MoCo, BYOL, SimCLR, and SimSiam. Across all datasets, our method
substantially elevated the performance of multiple baseline models. We also noted consistent
improvement in our refined models across semi-supervised and supervised fine-tuning tasks,
including object detection and segmentation. Our contributions in this work are as follows:

• We reveal that Siamese ConvNets experience reduced convergence when using the
conventional erase-based masking scheme. In response, we introduce an effective
filling-based masking strategy, which better complements the image-level contrastive
objective of self-supervised Siamese ConvNets.

• We integrate a flexible loss structure with a soft distance to harmonize the combined
masking and Siamese architecture. This ensures there are no discrepancies between
the transformed input and objectives in Masked Siamese ConvNets.

• Extensive experiments are performed on various datasets and Siamese frameworks to
solidify the efficacy and broad applicability of our approach. Our results consistently
indicate that our method outperforms MSCN in areas such as linear probing, semi-
supervised fine-tuning, and downstream tasks like detection and segmentation.

2 Related Work
Masked Siamese Networks. Recent developments in MIM and siamese self-supervised
learning have prompted research efforts to combine these two techniques. One such ap-
proach, Masked Siamese Networks (MSN), was proposed in [1]. MSN generates an anchor
view and a target view and applies masking operations exclusively to the anchor branch. To
assign masked anchor representations to the same cluster as the unmasked target, the method
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employs prototype cluster assignment. By contrast, CNNs are less compatible with masked
images as they operate at the pixel level, which can cause image continuity to be disrupted
by masking operations. To address this, Masked Siamese ConvNets were introduced in [20].
Self-supervised Learning. Self-supervised learning (SSL) is a technique for representation
learning that leverages vast amounts of unlabeled data. Early SSL approaches in the field of
computer vision were based on pre-text tasks [14, 25, 29, 35]. A pivotal advancement in SSL
was the introduction of a simple contrastive learning framework by [5, 9], which utilized
a siamese architecture in conjunction with an InfoNCE [26] contrastive loss. MoCo [18]
implemented a memory bank to store negative samples, but several studies have shown that
negative pairs are not always necessary. BYOL [28] employed an asymmetric architecture
with EMA, where the online network attempts to predict the representations of the target
network. SimSiam [7] provided a straightforward siamese framework that incorporated a
stop-gradient operation on one branch and an additional predictor step on the other. More
recently, SSL has begun to adopt the use of vision transformers [12]. DINO [4] combined a
distillation loss with vision transformers in a siamese framework.

3 Approach
In this section, we first introduce each component of our framework elaborately, including:
(1) a filling-based masking strategy; (2) an asymmetric loss formulation with soft distance
to match the proposed mix-masking scheme. Then, we provide an overview of the proposed
architecture comparing to the basic model and differences from other counterparts.

3.1 Masking Strategy

=⊙

+ =

switch

Erase/Gaussian noise masking strategy

filling coefficients

Figure 2: Illustration of the proposed filling-based masking strategy. The gray dashed box
shows Erase/Gaussian noise [20] masking strategy. A formal definition of a switch image in
the case of reverse permutation is given in Eq. 2.

Masking Scheme: Erasing or Filling? In Fig. 2, the prior Erase-based Gaussian noise
masking strategy is illustrated inside the dashed box. In such strategy, erased regions can be
filled with a Gaussian noise [20]. Different from Masked Image Modeling (MIM), which
is to reconstruct the masked contents for learning good representation, the Masked Siamese
Networks will not predict the information in removed areas, so erasing will only lose infor-
mation and is not desired in the learning procedure. In contrast to erase-based masking, our
filling-based strategy will repatch the removed areas using an auxiliary image, as shown in
the right part of Fig. 2. After that, we will switch the content between the main and auxiliary
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Symmetric
loss

MSCN

Fill

shared

MixMask

Asymmetric
loss

switch

Figure 3: Illustration of the Masked Siamese ConvNets (left) and our proposed framework
(right). MixMask branch incorporates asymmetry into the loss function design by generating
images with different rates of similarity to the images in the original branch. In MixMask
branch image of the truck is presented twice with different levels of similarity to the image
in the original branch due to the regions masked with contents of another image.

images to generate a new image for information completeness of the two input images. For
a given original image IIIi we define its mixture as a mix of the pair (IIIi, IIIn−i) and switch im-
age of IIIi as a mixture of the pair (IIIn−i, IIIi). Although the mixture contains information from
another image, which may have different semantics, it will still be beneficial by cooperating
with the soft loss design, discussed in Section 3.2, which takes into account the degree of
each individual image included in the mixture.
Masking Pattern: Blocked or Discrete? Masking pattern determines the difficulty for
the model to generate representations in siamese networks, even if the masking ratio is the
same, the representation will still be different for different masking patterns. It will di-
rectly influence the information of input to further affect the latent representations. Our
observation on Masked Siamese ConvNets is opposite to that in MIM methods, which found
discrete/random masking is better [19, 33]. From our empirical experiments, on CIFAR-
100, blocked and discrete masking patterns achieve similar accuracy, and discrete is slightly
better, however, on Tiny-ImageNet and ImageNet-1K, blocked mask clearly shows supe-
riority over discrete/random. We explain this as that if the input size is small, the mask
pattern is not so important since the semantic information of the object is still preserved.
On larger datasets like Tiny-ImageNet and ImageNet-1K, discrete/random masking will en-
tirely destroy the completeness of the object in an image, as shown in Fig. 1 (d, e), while
this is crucial for ConvNet to extract a meaningful representation of the object. Blocked
masking also better synergizes with the contrastive objective, which is biased to learn global
features [6, 10]. Therefore, blocked masking shows superior ability on the MSCN and is a
better choice than random discrete masking.

3.2 Distance in Siamese Networks
Objective Calculation: Inflexible or Soft? It has been observed [30] that different pre-
text and data processes (e.g., masking, mixture) will change the semantic distance of two
branches in the siamese networks, hence the default symmetric loss will no longer be aligned
to reflect the true similarity of the representations. It thus far has not attracted enough atten-
tion for such a problem in this area. In this work, we introduce a soft objective calculation
method that can fit the filling-based masking strategy in a better way. To calculate the soft
distance, we start by generating a binary mask with a fixed grid size that will later be used
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to mix a batch of images, denoted as III, from a single branch. In case when we use a reverse
permutation to obtain the mixture, each image in the batch with index i is mixed according
to the mask with the image in the same batch but with index n− i as described in Eq. 1:

mixi = mix(IIIi, IIIn−i) = m⊙ IIIi +(1−m)⊙ IIIn−i (1)

switchi = mix(IIIn−i, IIIi) = m⊙ IIIn−i +(1−m)⊙ IIIi, (2)

where nnn is batch size and m is mask. The mixed image contains parts from both IIIi and
IIIn−i whose spatial locations in the mixture are defined by the contents of the binary mask.
Using m and 1−m ensures that each region in the mixture will contain pixels from exactly
one image and that there will be no empty unfilled regions. Furthermore, to reflect the
contribution of each image in the mixture, we calculate a mixture coefficient λ , which is
equal to the ratio of the masked area to the total area of the image using the Eq. 3:

λ =

∑
x,y

1[mask(x,y) = 1]

width ·height
, (3)

where 1 is the indicator function that measures the masked area of an image.
Loss Function. The final loss is defined as a summation of the original loss and mixture
loss: L = LOrig + LMixMask. Here we take a contrastive loss from MoCo [18] as an ex-
ample, where q and k are two randomly augmented non-mixed views of the input batch.
The notation stems from queries and keys from MoCo nomenclature, the LOrig will be:
LOrig = − log exp(q·k/τ)

∑
K
i=0 exp(q·ki/τ)

. The mixture term LMixMask will contain two terms which are

scaled with λ coefficient:

LMixMask = λL↑+(1−λ )L↓ =−
(

λ log
exp(q↑ · k/τ)

∑
K
i=0 exp(q↑ · ki/τ)

+(1−λ ) log
exp(q↓ · k/τ)

∑
K
i=0 exp(q↓ · ki/τ)

)
, (4)

where q↑ and q↓ are normal and reverse orders of mixed queries in a mini-batch, k is the
unmixed single key, λ is calculated using the Eq. 3 and τ is the temperature.

3.3 Framework Overview
Our framework overview is shown in Fig. 3. In this figure, the left is the conventional Masked
Siamese ConvNets (MSCN), right is our proposed MixMask with asymmetric distance loss.
The motivation behind this design is that directly erasing regions will lose a significant pro-
portion of information in the Siamese ConvNets, which cannot be recovered by post-training.
This is quite different from the mechanism of Masked Autoencoders (MAE) [19] that predict
masked areas to learn good representations. According to this, we propose a filling-based
scheme to overcome the drawback. The soft distance loss is designed to fit the true similar-
ity of the two branches. We empirically show that with the integrality of mix-masking and
objective, we can learn more robust and generalized representations from the masked input.
Differences from Prior Counterparts. MSN and MSCN utilize regular erase-based mask-
ing and Un-Mix approach integrates Mixup and CutMix techniques into siamese networks
for self-supervised learning. In contrast, our proposed MixMask method is a generalized
masking approach specifically designed for siamese networks that allows for arbitrary mask
area shapes. Our empirical study demonstrates that MixMask exhibits stronger representa-
tion learning capabilities. Interestingly, MixMask is also compatible with Un-Mix [30] that
can be employed jointly to further improve performance and achieve state-of-the-art accu-
racy. SparK and ConvNeXt V2 propose a way of doing MIM with single branch ConvNet
and reconstruction loss, while our work is focused on the Siamese contrastive framework.
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4 Experiments
Base Models. In our experimental section, we use base models including: MoCo V1&V2 [8,
18], Un-Mix [30], SimCLR [5], BYOL [28] and SimSiam [7].
Datasets and Training Settings. We conduct experiments on Tiny-ImageNet [22], CIFAR-
100 [21], and ImageNet-1K [11]. For CIFAR-100 and Tiny-ImageNet, we train each frame-
work for 1000 epochs with ResNet-18 [16]. For ImageNet-1K, we pretrain ResNet-50 for
200 epochs and then finetune a linear classifier on top of the frozen features for 100 epochs
and report Top-1 accuracy. We use MoCo (and MoCo V2 for ImageNet-1K) as a base frame-
work unless stated otherwise. We report Top-1 on linear evaluation, except the case of MoCo
on CIFAR-100 and Tiny-ImageNet for which we provide k-NN accuracy. ∗ indicates that we
build our method upon Un-Mix. All our experiments are conducted on A100 (40G) GPUs.

4.1 Ablation Study
In the experiments, we use a blocked masking strategy, masking ratio of 0.5, and grid size of
2, 4, 8 for CIFAR-100, Tiny-ImageNet, and ImageNet-1K if not stated otherwise.
Masking Strategy. We first explore how different masking strategies affect the final result.
We consider three different hyperparameters: grid size, grid strategy, and masking ratio. To
make our experiments more reliable, we consider three datasets with different image sizes:
CIFAR-100: 32×32, Tiny-ImageNet: 64×64, and ImageNet-1K: 224×224.

CIFAR-100 Tiny-ImageNet ImageNet-1K
Input size 32×32 64×64 224×224
Grid Size

2×2 68.1 46.4 68.4
4×4 67.6 47.4 69.0
8×8 67.5 46.5 69.2

16×16 – 46.1 68.5
32×32 – – 68.7
48×48 – – 68.8

Masking Strategy
blocked 67.8 47.4 69.2
discrete 68.1 46.4 68.4

Masking Ratio
0.25|0.75 66.8 45.6 68.5

0.5 68.1 47.4 69.2
uniform(0, 1) 67.6 45.5 68.7

Switch Mixture
Yes 68.1 47.4 69.2
No 67.3 45.6 67.8

Table 1: Ablation study on masking and
switch strategies using MoCo V1/V2 with
original and MixMask branches. k-NN ac-
curacy averaged over 3 runs is reported.

The first parameter grid size specifies the
granularity of the n × n square grid of the
image. We consider the following values of
n = 2,4,8,16,32,48. However, we have dif-
ferent upper bounds for different datasets de-
pending on the spatial size of the images.
From our experiments, we can conclude that
a very large grid size completely disrupts the
semantic features of the image and leads to
poor performance. Our results indicate that
optimal grid size increases proportionally to
the input size of the image. We obtain the op-
timal grid size for CIFAR-100 is 2, for Tiny-
ImageNet is 4, and for ImageNet-1K is 8. The
masks with very small and very large grid
sizes show bad performance. We think this
happens because a small grid size does not
provide enough variance in the mask structure whilst a large grid size destroys the important
semantic features of the image.

We consider two different strategies for the random mask generation, discrete/random
mask and blocked mask. We generate a blocked mask according to the algorithm described
in [2]. A discrete mask does not have any underlying structure, whilst a blocked mask is
generated in a way to preserve global spatial continuity and, thus, is more suitable for cap-
turing global semantic features. For CIFAR-100, we observe a negligible difference between
blocked and discrete masks. On the other hand, for Tiny-ImageNet and ImageNet-1K, which
have larger spatial sizes of the image, blocked mask performs better than discrete. This ob-
servation is different from MIM-based approaches [19, 33], where a discrete mask achieves
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CIFAR-100 Tiny-INet INet-1K
MoCo SimSiam BYOL SimCLR MoCo BYOL MoCoV2

Vanilla 65.7 66.7 66.8 67.1 42.8 51.4 67.5
Un-Mix [30] 68.6 70.0 70.0 69.8 45.3 52.9 68.5
MixMask 68.4 69.8 71.9 69.2 47.4 50.8 69.2
MixMask∗ 70.0 70.6 72.1 70.0 47.9 53.7 69.5

Table 2: Ablation on different base frameworks. * means we use our method with Un-Mix.

better performance and highlights the importance of maintaining global features when gener-
ating an image mixture as opposed to the case when erasing parts of the image by performing
a vanilla masking operation. This also reflects the different mechanisms and requirements of
reconstruction-based and siamese-based self-supervised learning approaches.

For the masking ratio, we consider two cases with constant values of 0.5 and 0.25/0.75
(as there is no difference between these two due to the loss function design) and two cases
when the value is sampled from the uniform distribution with different bounds. We obtain the
best results for masking ratio 0.5 under different settings, conjecturing that this value causes
the blocked mask to generate consistent global views for both of the images being mixed.
Sampling masking ratio from a uniform distribution with bounds 0.25 and 0.75 yields better
results than using 0 and 1 as bounds. We believe this shows that extreme values close to
either 0 or 1 generate a mixture where one image heavily dominates over the other when in
the optimal mixture, areas of each image should be roughly proportional.
Switch Mixture. We also examine the efficacy of the second term in the mixture loss in
Eq. 4, which is computed using switch images and multiplied with soft coefficient (1−λ ).
Certainly, having two terms in the mixture loss part is beneficial and gives better results in
Table 1 on all datasets as it provides more training signal.
Training Budgets. We test our method with different training budgets of 200, 400, 600,
800, and 1000 epochs on CIFAR-100 using MoCo, SimCLR, and SimSiam. The results are
shown in Fig. 5. We can observe our method achieves consistent improvement over various
frameworks.
Results for Different Base Frameworks. In Table 2 we consider the generalizability of our
method by applying it on top of four different self-supervised learning frameworks. When
applying our method upon Un-Mix, we yield superior performance in all cases. Plain Mix-
Mask also provides a competitive performance in all the experiments.

Method Top-1 200 ep COCO APdet COCO APseg Top-1 1% labels

MoCo V2 67.5 39.3 34.4 50.3
MSCN 68.2 39.1 34.2 54.0

MixMask 69.2 39.8 34.8 54.5

Table 3: MixMask shows better performance than
MoCo v2 on linear probing, COCO detection and
segmentation, and 1% label supervised finetuning.
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Figure 4: MixMask outperforms MSCN
on ImageNet-1K by 1%.
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Figure 5: Results with different training budgets and base frameworks on CIFAR-100. Mix-
Mask consistently performs better than the baseline for every configuration.
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MS COCO 2017 Pascal VOC 2007

Method
Object detection Segmentation Object detection

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

MoCo V2 [8] 39.3 58.9 42.5 34.4 55.8 36.5 57.4 82.5 64.0
SwAV [3] 38.4 58.6 41.3 33.8 55.2 35.9 56.1 82.6 62.7
Barlow Twins [34] 39.2 59.0 42.5 34.3 56.0 36.5 56.8 82.6 63.4
MSCN [20] 39.1 59.1 42.1 34.2 55.7 36.4 57.5 83.0 64.4
MixMask 39.8 60.0 43.0 34.8 56.3 37.0 57.9 83.0 64.5

Table 4: MixMask gives the best performance on all metrics on COCO and Pascal VOC.

4.2 Comparison and Superiority to MSCN
We present evidence demonstrating that our approach, MixMask, outperforms MSCN [20].
Specifically, Table 3 shows the results of linear probing for 200 epoch pretraining and down-
stream evaluation for object detection/segmentation on COCO [23] and supervised fine-
tuning on 1% of ImageNet-1K. MixMask achieves superior performance by proposing a
method to fill the erased regions with meaningful semantics on all of the benchmarks. Ad-
ditional results for semi-supervised fine-tuning and object detection are available in Table 4
and Table 5. The results demonstrate that MixMask outperforms MSCN and even surpasses
the performance of SwAV in semi-supervised fine-tuning. Moreover, MixMask achieves
better results than MSCN on all evaluation metrics for detection and segmentation. Notably,
our approach is conceptually simpler and computationally more efficient than MSCN, which
requires combining multiple masking strategies, adding Gaussian noise, and multicrops.

4.3 Results on Semi- and Supervised Finetuning
For the semi and supervised finetuning on ImageNet-1K, we follow the protocol described in
[20]. We explore three different data regimes of 1%, 10%, and 100% of labels and finetune
all models for 20 epochs. The results are given in Table 5, MixMask outperforms MSCN
as well as MoCoV2 and SwAV on 1% data regime and shows competitive performance to
SwAV and Barlow Twins on 10%.

Method
1% labels 10% labels 100% labels
Top-1 Acc Top-1 Acc Top-1 Acc

MoCo V2 [8] 50.3 66.8 76.7
SwAV [3] 53.9 70.2 –
Barlow Twins [34] 55.0 69.7 –
MSCN [20] 54.0 - –
MixMask 54.5 69.3 77.7

Table 5: Results of semi-supervised and supervised finetuning on ImageNet-1K.

4.4 Results on Object Detection and Segmentation
We test our method on the downstream task of object detection and segmentation. For that,
we finetune a Faster-RCNN [27], and Mask-RCNN [17] models from Detectron2 [32] on
Pascal VOC 2007 [13], and MS COCO 2017 [23] datasets. For VOC 2007, we follow the
standard evaluation protocol in [18] with 24k training iterations. For COCO, we use 1×
schedule from [32]. The results in Table 4 verify the superiority of the proposed MixMask
to all other frameworks, including MSCN.
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5 Conclusion
We have introduced MixMask, a new masking approach tailored for self-supervised learn-
ing on ConvNets. This method harmoniously merges an asymmetric loss with a filling-
based masking procedure within the framework of the Masked Siamese ConvNets. Our
experiments consistently demonstrate that MixMask surpasses the conventional symmet-
ric loss and erase-centric masking techniques used in MSCN. We have demonstrated that
our distinct asymmetric loss function outshines the standard symmetric loss associated with
MSCN. Moreover, we addressed the challenge of diminished learning efficiency inherent in
traditional erase-centric masking by adopting a filling-centric approach. In this strategy, an
alternative image serves to occupy the voided regions. We have also laid out a comprehen-
sive guideline for seamlessly infusing MixMask into other blending techniques, elaborating
on how varying masking parameters influence the caliber of the resultant representations.
The results unequivocally highlight our method’s superiority over MSCN in linear probing
and multiple downstream applications such as object detection and segmentation.
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