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1 Robustness of self-supervised features.

In order to evaluate the robustness of the self-supervised view-independent 3D Gaussian
features we utilize them for another downstream task, namely depth prediction. Instead
of doing monocular depth prediction on the rendered image, we employ our splatted 3D
Gaussian features as additional information. While we did not re-train the 3D Gaussian
feature learning, we trained another VDVI feature fusion module and depth prediction head.
A schematic overview of the employed architecture can be found in Figure 2 of the main
body. To evaluate our results quantitatively, we employed the popular metrics, employed in
[7]. In Table 1, we describe the different employed metrics, where d and d∗ are the true
and predicted depth values of a pixel, respectively, and n the total number of pixels in the
instance. To train the VDVI feature fusion module and depth prediction head, we employed
the MSE-loss as loss function.

The results of the proposed method and ablation of the 3D Gaussian features on the
Replica dataset [8] can be found in Table 2. It can be seen that the addition of our view-
independent 3D Gaussian features, allows a consistent improvement of the depth prediction
for all employed metrics. More specifically, we achieve an important 24.1% improvement in
Abs. Rel. and 25.4% in RMSE, compared to the experiment without self-supervised view-
independent 3D Gaussian features, i.e. monocular depth prediction. Qualitative results are
presented in Figure 1, visualized using a heatmap going from red, closeby, to blue, far away.
It can be noticed that the depth predictions are of high quality, both closeby and far away,
closely resembling the ground-truth depth maps.
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Rendering Depth pred. Depth GT
Figure 1: Depth prediction of the proposed method on Replica dataset.
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Table 1: Definition of the employed depth metrics [7]

Abs
Rel

Abs
Diff

Sq
Rel

RMSE δ<1.25 δ<1.252 δ<1.253 Comp

Ours w/o 3D features 0.108 0.238 0.040 0.303 0.911 0.985 0.994 0.998
Ours 0.082 0.173 0.024 0.226 0.948 0.994 0.998 0.999

Table 2: Performance metrics on Replica dataset [8] and ablation of the effect of the self-
supervised view-independent 3D Gaussian features for depth prediction. W/o stands for
without.

2 Details of the loss functions

2.1 Contrastive loss

Our robust view-independent 3D features are learnt in a self-supervised manner, using the
contrastive point cloud loss described in [10]. Additionaly, specifically for operating on 3D
Gaussian representations, we added scale and opacity transformations to the training input
to ensure that the existing information of the Gaussians is retained during training. We will
follow below the notations from the main body of our paper, for consistency reasons and
facilitate reader comprehension.

Given a set of k scenes with their corresponding Gk representation, we construct a list
of correspondences P1, . . . ,Pk. For two different viewpoints of a scene k, we define the set
{gk

1′,gk
2′, . . .} as the points that lie within the frustum of both views. Indices m and n denote

the positions of the points in the first and second views, respectively, as listed in Pk. These
correspondences are considered positive pairs and retain their positive value for contrastive
loss computation. The employed loss-function can be expressed as follows:

Lcl =− ∑
(m,n)∈Pk

log
exp( f k

m · f k
n/τ)

∑(l,·)∈Pk
exp( f k

m · f k
l /τ)

, (1)

where τ is a constant set to 0.07.

2.2 Semantic loss

The employed semantic loss function is composed by two terms: the per pixel cross entropy
loss and the CeCo term, expressed mathematically as follows

Lsem = LCrossEntropy +λCeCoLCeCo. (2)
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The CeCo loss-term, LCeCo, described in [13], can be expressed mathematically as follows:

LCeCo(Z̄,W∗) =−
K

∑
k=1

log

(
exp(z̄⊤k w∗

k)

∑
K
k′=1 exp(z̄⊤k′w

∗
k′)

)
, (3)

Where Z̄,W∗ are the features centers and the classifier weights, respectively. In this scenario
K describes the number of classes. The intuition of using this addition term was due to the
highly unbalanced nature of the 2D segmentation labels, as classes such as walls, ceiling
and floors are dominant. This intuition was supported by the results of our ablation study, in
Table 4 of the main body, where can be seen that CeCo proves mostly beneficial for the less
dominant classes. This can be noticed as the performance increase for the experiment with
all classes is larger than the performance increase for only 20 most frequent classes.

3 Dataset setup
In this section, we discuss our dataset setup in more detail. Our experiments were conducted
on three different datasets: Replica [8], ScanNet [2], and ScanNet++ [11]. For the Replica
split, we followed the Semantic-NeRF setup as described in [12]. The tested resolution was
480×640. For the ScanNet dataset, we trained on the first 60 scenes and tested on 10 scenes,
following the setup in [1]. The tested resolution was the same as in [1, 5]. For ScanNet++,
we randomly selected 40 scenes for training and 10 scenes for testing.

4 More implementation details

4.1 View-independent implementation details
For the self-supervised view-independent 3D Gaussian feature learning, we used PointTrans-
formerV3 [9] as the encoder, optimized with the Adam optimizer [4] (β1 = 0.9, β2 = 0.999)
and a weight decay of 10−5. The number of points queried for contrastive learning is 4096.
To select the different views for scenes, we ensure that the corresponding frustums for those
views have an overlap of at least 30% but no more than 80%.

4.2 View-Dependent / View-Independent (VDVI) feature fusion
implementation details

We used the backbone of Asymformer [3], extracting the last activations before the final
layer to provide the appropriate information for Lcl . Optimization was performed using the
AdamW optimizer [6] (β1 = 0.9, β2 = 0.999) with a weight decay of 10−4. During the
generalization stage, we applied a warm-up of 4 epochs, which was disregarded during the
fine-tuning stage. The learning rate was set to 10−4.

5 Video Demo
Attached to the supplementary materials is also a video demo in which we exhibit the results
for different video sequences, displaying the extraordinary performance of RT-GS2 over a
complete sequence. Sequences were selected for both a synthetic dataset, Replica [8], and
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real-world data, ScanNet++ [11], exhibiting the robustness of our highly accurate results. It
can be noticed from the video demo, that the proposed method enhances view-consistency
for our selected downstream tasks.

6 Additional visualizations

In this section, we show additional qualitative visualizations on all three datasets. Figure 2
and Figure 3 contain additional visualizations from Replica [8] and ScanNet [2], respectively.
Figure 4 and Figure 5 present extensive visualizations on ScanNet++ [11] for all 10 test
scenes on which experiments were conducted.

Rendering Sem. Prediction Finetuned GT
Figure 2: Additional qualitative results of RT-GS2 on the Replica [8] dataset.
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Rendering Sem. Prediction Finetuned GT
Figure 3: Additional qualitative results of RT-GS2 on the ScanNet [2] dataset. We point
out that the peach orange color is the unannotated class, which is frequently present in the
ScanNet dataset.
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Rendering Prediction Finetuned GT
Figure 4: Qualitative results on ScanNet++ [11] on the first five test scenes. We point out
that dark purple color represents the unannotated and other classes in the ScanNet++ dataset.
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Rendering Prediction Finetuned GT
Figure 5: Qualitative results on ScanNet++ [11] on the last five test scenes. We point out that
dark purple color represents the unannotated and other classes in the ScanNet++ dataset.
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