
JURCA, ROYEN, GIOSAN, MUNTEANU: RT-GS2 1

RT-GS2: Real-Time Generalizable Semantic
Segmentation for 3D Gaussian
Representations of Radiance Fields

Mihnea-Bogdan Jurca*1, 2

mihnea-bogdan.jurca@vub.be

Remco Royen*1

remco.royen@vub.be

Ion Giosan2

ion.giosan@cs.utcluj.ro

Adrian Munteanu1

adrian.munteanu@vub.be

1 Department ETRO
Vrije Universiteit Brussel
Brussels, Belgium

2 Computer Science Department
Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Abstract

Gaussian Splatting has revolutionized the world of novel view synthesis by achiev-
ing high rendering performance in real-time. Recently, studies have focused on enriching
these 3D representations with semantic information for downstream tasks. In this paper,
we introduce RT-GS2, the first generalizable semantic segmentation method employing
Gaussian Splatting. While existing Gaussian Splatting-based approaches rely on scene-
specific training, RT-GS2 demonstrates the ability to generalize to unseen scenes. Our
method adopts a new approach by first extracting view-independent 3D Gaussian features
in a self-supervised manner, followed by a novel View-Dependent / View-Independent
(VDVI) feature fusion to enhance semantic consistency over different views. Exten-
sive experimentation on three different datasets showcases RT-GS2’s superiority over
the state-of-the-art methods in semantic segmentation quality, exemplified by a 8.01%
increase in mIoU on the Replica dataset. Moreover, our method achieves real-time per-
formance of 27.03 FPS, marking an astonishing 901 times speedup compared to existing
approaches. This work represents a significant advancement in the field by introduc-
ing, to the best of our knowledge, the first real-time generalizable semantic segmentation
method for 3D Gaussian representations of radiance fields. The project page and imple-
mentation can be found at https://mbjurca.github.io/rt-gs2/

1 Introduction
Scene Understanding is a fundamental area of research, essential for facilitating seamless
interactions between digital devices and the three-dimensional environment. While 2D rep-
resentations such as RGB images are traditionally being employed, they fail to fully capture
the three-dimensional properties of the scene, resulting in view-dependent outcomes [8]. On
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Figure 1: Visualization of the enhanced view-consistency throughout subsequent frames.
(Top) Visualization of our view-independent 3D features using PCA, (middle) semantic seg-
mentation without the usage of view-independent 3D features, and (bottom) proposed se-
mantic segmentation when using our view-independent 3D features.

the other hand, 3D representations such as point clouds and polygonal meshes offer the ca-
pability to digitally represent 3D scenes, but typically require high-resolution 3D point data
to capture fine details [23, 29], often obtained through expensive devices like LiDARs.

In recent years, Neural Radiance Fields (NeRFs) have emerged as a groundbreaking ap-
proach for novel view synthesis [1, 17, 18]. By training multi-layered perceptrons (MLPs) on
extensive sets of images captured from various viewpoints, NeRFs learn an implicit 3D rep-
resentation of a scene. Beyond novel view synthesis, this learned 3D representation proves
beneficial for downstream tasks as it enhances accuracy and enables view-consistent scene
understanding [30]. Moreover, by formulating the loss of rendering and downstream tasks in
the 2D domain, the need for time-intensive 3D annotations is eliminated. However, despite
their performance, NeRFs exhibit a significant trade-off between visual quality and infer-
ence speed [18, 38]. Recently, a novel approach, dubbed Gaussian Splatting, was introduced
for novel view synthesis [13]. This method learns 3D Gaussian distributions in space, en-
compassing not only location and scale but also opacity and color spherical harmonics per
3D Gaussian. By simply splatting these Gaussians during inference, real-time high-quality
synthesis of novel views is achieved.

Significant research efforts have been directed towards extending novel view synthesis
methods to accommodate downstream tasks. A popular approach is to equip NeRFs with
semantic segmentation capabilities [2, 40]. While these methods yield impressive segmen-
tation results, they are trained on a scene-per-scene basis and are thus unable to generalize
to unseen scenes. Consequently, methods [6, 12, 14, 15, 16, 28] capable of performing se-
mantic segmentation on unseen 3D NeRF representations were designed. As these methods
are built upon NeRFs, real-time capabilities are lacking. Although recent studies have be-
gun exploring downstream applications using 3D Gaussian Splatting [11, 21, 36, 42], to the
best of our knowledge, no existing method in the current literature addresses generalizable
semantic segmentation for 3D Gaussian Splatting.
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In this paper, we present a novel method, dubbed RT-GS2, designed for generalizable
semantic segmentation based on 3D Gaussian Splatting. RT-GS2 consists of three distinct
stages. Firstly, a self-supervised 3D Gaussian feature extractor learns view-independent 3D
features from the complete Gaussian 3D representation. After splatting the features and 3D
Gaussians for a specific viewpoint, feature fusion is performed, enhancing view-consistent
semantic segmentation, as illustrated in the examples of Figure 1. Results for both semantic
segmentation and depth prediction showcase the robustness of the obtained geometric 3D
features. RT-GS2 not only surpasses the state of the art in generalizable semantic segmenta-
tion but also achieves an impressive speedup, being 901 times faster than existing methods.
By doing so, it is the first to meet real-time constraints, marking a significant advancement
in the field. In summary, our main contributions include:

• The introduction of a novel method for generalizable semantic segmentation, the first
to employ 3D Gaussian splatting. RT-GS2 presents a novel approach by first obtaining
view-independent 3D features in a self-supervised manner, followed by a so-called
View-Dependent / View-Independent (VDVI) feature fusion to obtain enhanced view-
consistency for semantic segmentation.

• A self-supervised feature extractor for 3D Gaussians, enabling the extraction of generic
and consistent view-independent 3D features, which prove to be robust for multiple
tasks such as semantic segmentation and depth predictions.

• Extensive experimentation on different datasets demonstrating that RT-GS2 not only
strongly outperforms the state of the art in segmentation quality but also achieves
real-time inference, achieving a notable 901 times speedup compared to existing gen-
eralizable semantic segmentation methods.

2 Related work
Novel View Synthesis. The growing interest in implicit neural representations has greatly
advanced the frontier of novel view synthesis in recent years. The seminal NeRF paper [17]
has spurred iterative enhancements focusing on faster rendering [22, 31, 38], accelerated
training processes [3, 18, 26], and the capability to handle unbounded scenes [1]. Recently,
Gaussian Splatting [13] has demonstrated superiority over NeRF-based methods in both ren-
dering quality and inference time. Acknowledging the remarkable potential of 3D Gaussians,
we build upon this paradigm.
Semantic Segmentation. Traditional semantic segmentation techniques operate on a single
modality. While 2D-based techniques [5, 32] benefit from the employment of cost-efficient
RGB-camera’s, they have difficulties to fully capture the underlying 3D geometry. 3D se-
mantic segmentation methods [19, 20, 33, 34, 39] on the other hand, achieve high perfor-
mance but require dense 3D models captured by expensive 3D scanners. The advent of
NeRFs allowed to achieve view-consistent results on 2D images for a specific 3D scene by
equipping NeRFs with semantic capabilities [2, 40]. In order to achieve real-time constraints,
[9, 24, 36] learn semantic features for each 3D Gaussian.
Generalizable Semantic Radiance Fields. While the above mentioned NeRF- and Gaus-
sian Splatting-based semantic segmentation papers achieve high performance, their scene-
specific training leads to significant overfitting for individual scenes. To address this limi-
tation, generalizable semantic segmentation methods, capable of segmenting unseen scenes,
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were proposed for NeRFs [4, 6, 14, 15]. For instance, S-Ray [15] introduces a Cross-
Reprojection Attention module for efficient exploitation of semantic information along rays,
while GP-NeRF [14] utilizes transformers to aggregate semantic embedding fields. GNeSF [4]
employs a soft voting mechanism to aggregate 2D semantic information from different
views, and GSNeRF [6] integrates image semantics into the synthesis process for mutual
enhancement. However, due to their dependence and build-up on NeRFs, these methods
lack real-time execution. To our knowledge, there is no existing method in scientific litera-
ture that uses 3D Gaussian Splatting for real-time generalizable semantic segmentation. This
is addressed next.

3 3D Scene Representations Using 3D Gaussian Splats

In order to render novel views of complex scenes, NeRF-based methods define a continuous
volumetric radiance field [17] for each scene, parameterized by Fθ : R5 → R4, where Fθ

is implemented by a MLP with learnable parameters θ . A differentiable forward mapping
function is employed to retrieve discrete 2D views from the radiance field. A per-pixel loss
between the synthesized rendering and the ground truth image allows the optimization of
parameters θ for a specific scene.

Gaussian Splatting [13] takes a different approach and optimizes the training and ren-
dering process while preserving the desirable properties of a radiance field. This is achieved
by removing the implicit 3D representation and instead modeling each scene k as a com-
bination of 3D Gaussian functions Gk = {gk

1,g
k
2, . . . ,g

k
N}. Each Gaussian gk

i is defined by
its world coordinates xk

i ∈ R3 and a covariance matrix Σk
i ∈ R3×3. Additionally, they are

further enriched with an opacity αk
i ∈ R, and a color ck

i , represented by spherical harmonic
coefficients with three degrees. Thus, mathematically, each 3D Gaussian can be represented
as gk

i = {xk
i ,Σ

k
i ,α

k
i ,ck

i }. To render from Gk the 2D image Îk
j for view j with pose p j, the 3D

Gaussians are splatted into a RGB image employing alpha blending, expressed mathemati-
cally as follows:

Îk
j(u,v) = ∑

i∈N′
ck

i α
k
i

i−1

∏
m=1

(1−α
k
m), (1)

where (u,v) ∈ ([1,H], [1,W ]) represent the pixel coordinates in the 2D image after splatting
N′ Gaussians. When repeated for all pixels, the rendered image Îk

j is obtained. The Gaussian
parameters are optimized by employing the following loss function:

L= (1−λ )L1 +λLD−SSIM, (2)

with L1 a per-pixel L1-loss and LD−SSIM the structural dissimilarity metric between the ren-
dered Îk

j and the ground truth image Ik
j. The hyperparameter λ is typically set to 0.2. Similar

to Equation 1, a feature rendering function is defined, as introduced by [36], allowing the
splatting of Gaussian features fk

i ∈RD, where fk
i are the features attached to gk

i , to the feature
image Zk

j ∈ RH×W×D. This feature rendering function can be expressed mathematically by:

Zk
j(u,v) = ∑

i∈N′
fk
i α

k
i

i−1

∏
m=1

(1−α
k
m). (3)
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Figure 2: Overview of the proposed method.

4 Proposed method

4.1 Overview of the proposed method
The architecture of the proposed method is illustrated in Figure 2 and consists out of three
main stages: (i) a new self-supervised view-independent 3D Gaussian feature extractor, (ii)
the rendering of the 3D information encapsulated in the enhanced 3D Gaussians to a specific
view, and (iii) a novel View-Dependent / View-Independent (VDVI) feature fusion. The first
stage, described in Section 4.2, transforms a 3D Gaussian representation Gk of a scene k,
into a set of features Fk = {fk

1, f
k
2, . . . , f

k
N} ∈ RN×D, where fk

i are the features learned for the
corresponding 3D Gaussian gk

i , and N is the number of 3D Gaussians in Gk. Important to
note is that, since the proposed method operates on the entire 3D Gaussian representation as
input, the features fk

i are view-independent. In the second stage, Fk is rendered by using alpha
blending, described in Equation 3, to a specific view j, defined by the given pose p j. The
feature image obtained by the splatting of Fk is denoted by Zk

j ∈ RH×W×D. In parallel, the
novel view Îk

j is rendered. In the last stage, the novel VDVI feature fusion module, described
in Section 4.3, extracts view-dependent features from Îk

j and fuses them at different scales
with Zk

j. A joint decoder is employed to obtain the semantic predictions Ŝk
j. By training the

model on different scenes k, RT-GS2 is able to generalize semantic segmentation to unseen
scenes.

4.2 View-independent 3D Gaussian feature learning
In order to obtain view-independent 3D Gaussian features, suitable for generalization on un-
seen scenes, we propose to learn 3D features directly from the Gaussian 3D representation.
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This is in stark contrast to existing methods [9, 36] which employ loss-terms in 2D to learn
per-Gaussian features, leading to view-specific and most importantly, scene-specific Gaus-
sian features. Our fundamentally different approach exploits the spatial distribution of the 3D
Gaussians and inter-Gaussian relations to extract 3D features for unseen scenes. More specif-
ically, we employ a point cloud autoencoder as backbone as it allows to process unstructured
3D points and retrieve global and local features. In this autoencoder, each 3D Gaussian is
represented by its location while the additional properties are encoded in the channel dimen-
sion. Important to note, is that the 3D Gaussian feature extractor operates on the complete
Gaussian 3D representation during inference. This ensures the retrieval of view-independent
3D Gaussian features, exploiting information from the entire scene, beyond a specific view.
From Figure 1 can be seen that the obtained 3D features are view-consistent and this, by con-
sequence, improves view-consistency of the final semantic segmentation Ŝk

j. An additional
advantage of processing the entire scene is the possibility to compute the 3D features only
once for the whole scene, further reducing required online inference time while navigating
through the scene.

Lastly, we have opted to train the view-independent 3D Gaussian feature extractor in a
self-supervised manner, following the contrastive learning training procedure of [35]. This
not only allows to perform the feature computation entirely in the 3D domain, but also en-
sures the extraction of robust features, suitable for multiple downstream tasks. In the sup-
plementary, we ablate the robustness of the features by performing depth prediction. The
employed self-supervised loss is described in Section 4.4.

4.3 View-Dependent / View-Independent (VDVI) feature fusion
The View-Dependent / View-Independent (VDVI) feature fusion module consists out of two
parallel encoders: EncV D and EncV I . The former encodes the image Îk

j to view-dependent
features. The latter takes the splatted view-independent 3D features, Zk

j, as input. At dif-
ferent scales, the view-independent features are fused with the encoded view-dependent fea-
tures in encoder EncV I . At the lowest scale, the output of both encoders are fused by a fusion
function ψ . Hereafter, the resulting features are employed by a decoder Dec to retrieve the
semantic predictions Ŝk

j. This can be expressed mathematically as follows:

Ŝk
j = Dec(ψ(EncV D(Îk

j),EncV I(Zk
j, Î

k
j))). (4)

VDVI feature fusion improves pure segmentation performance and increases view-consistency
of the results.

4.4 Loss
The self-supervised 3D Gaussian feature extractor and VDVI feature fusion are optimized
with respect to Lcl [35] and Lsem, respectively, each one defined below. Detailed descriptions
on the losses and individual loss-terms can be found in the supplementary material.

Lcl =− ∑
(m,n)∈Pk

log
exp( f k

m · f k
n/τ)

∑(l,·)∈Pk
exp( f k

m · f k
l /τ)

(5)

Lsem = LCrossEntropy +λCeCoLCeCo. (6)
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Semantic Rendering Time
Method Published mIoU mAcc oAcc PSNR↑ SSIM↑ LPIPS↓ FPS↑

General.

MVSNeRF* [12] CVPR2022 30.21 39.75 69.35 23.68 84.37 28.08 -
Neuray* [16] CVPR2022 40.91 50.15 76.23 27.80 89.55 23.68 <0.03
S-Ray [15] CVPR2023 43.27 52.85 77.63 26.77 88.54 22.81 0.03

GSNeRF [6] CVPR2024 51.23 61.10 83.06 31.71 92.89 12.93 -
Ours - 59.24 66.04 93.99 36.02 97.12 4.91 27.03

Finetune
S-Ray [15] CVPR2023 84.12 88.53 96.36 27.78 84.53 12.88 0.03

Ours - 93.75 96.19 99.33 36.02 97.12 4.91 27.03
Table 1: Comparison on REPLICA [25] of the proposed method against the state of the art
for generalizable semantic segmentation and after finetuning on a specific scene. * denotes
the addition of a semantic head.

5 Experiments

5.1 Experimental setup

Datasets and Metrics. Experiments were conducted on three datasets: Replica [25], Scan-
Net [7], and ScanNet++ [37], representing synthetic and real-world indoor scenes. Exper-
imental settings meticulously followed those of [6] for Replica and ScanNet. Details and
splits are provided in the supplementary material. As evaluation metrics, we employed mean
Intersection over Union (mIoU), mean Accuracy (mAcc), and overall Accuracy (oAcc) for
segmentation, and Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) for rendering quality. Inference speed
was measured in Frames Per Second (FPS).
Implementation details. To train the RT-GS2 model, RGB data and their corresponding
semantic masks are required for the training scenes. During testing, the model is able to
operate solely on the Gaussian Splatting representation, discarding the need for expensive
semantic masks for unseen scenes. Additionally to generalization performance, we also
report the performance of our model after fine-tuning the generalized model for a fixed num-
ber of iterations using the scene’s semantic labels, allowing an increased performance. The
view-independent 3D Gaussian feature extractor employs a PointTransformerV3 [34] with
the output feature dimension D empirically chosen as 32. The input, with channel dimen-
sion 10 (xyz, base color, scale information and opacity), is subsampled during training with
voxelization (size 0.07). The contrastive loss is computed among 4096 corresponding points
from 2 different views. Asymformer [10] is selected as a real-time VDVI feature fusion
backbone. λCeCo is chosen 0.4 and LSR [27] is employed for generalization. All experi-
ments were performed using a NVIDIA GeForce RTX 3090 GPU.

5.2 Comparison to state of the art

Semantic segmentation on Replica. Table 1 showcases our results on Replica [25] along-
side a comparison with state-of-the-art methods. Our method significantly outperforms ex-
isting approaches in both segmentation quality and inference time. Specifically, for semantic
generalization, RT-GS2 outperforms the state of the art across all evaluated metrics, achiev-
ing an impressive 8.01% increase in mIoU. Fine-tuning on specific scenes for 20k itera-
tions further improves performance to 93.75% and 99.33% for mIoU and oAcc, respectively.
While RT-GS2 does not present rendering generalization, we also present rendering per-
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Semantic Rendering Time
Method Published mIoU mAcc oAcc PSNR↑ SSIM↑ LPIPS↓ FPS↑

General.

MVSNeRF* [12] CVPR2022 43.06 53.63 66.90 24.14 80.36 34.63 -
Neuray* [16] CVPR2022 46.09 53.79 66.39 25.24 84.39 31.33 <0.11
S-Ray [15] CVPR2023 47.69 54.47 64.90 25.13 84.18 30.44 0.11

GSNeRF [6] CVPR2024 52.21 60.14 74.71 31.49 90.39 13.87 -
Ours - 53.27 62.43 81.20 27.27 89.10 21.77 27.03

Finetune
S-Ray [15] CVPR2023 91.6 92.2 97.3 27.31 - - 0.11

GSNeRF [6] CVPR2024 93.2 96.8 98.2 30.89 - - -
Ours - 96.94 98.87 99.01 27.27 89.10 21.77 27.03

Table 2: Comparison on ScanNet [7] of the proposed method against the state of the art for
generalizable semantic segmentation and after finetuning on a specific scene. * denotes the
addition of a semantic head.

Semantic Rendering Time
Method mIoU mAcc oAcc PSNR↑ SSIM↑ LPIPS↓ FPS↑

Generalization Ours 66.14 77.32 83.79 26.39 87.31 17.08 27.03
Finetuned Ours 91.85 95.73 96.24 26.39 87.31 17.08 27.03

Table 3: Quantitative results on ScanNet++ [37] of the proposed method for generalizable
semantic segmentation and after finetuning on a specific scene.

formance for completeness. The usage of Gaussian Splatting for rendering allows for an
increase in rendering performance. Notably, our method achieves real-time novel view syn-
thesis and segmentation at 27.03 FPS, a remarkable 901 times speedup compared to S-Ray.
Qualitative results, depicted in Figure 3, demonstrate compelling segmentation performance.
After finetuning, even the fine details are correctly segmented. RT-GS2 consistently outper-
forms S-Ray in both settings. Additional visual results and a video can be found in the
supplementary material.
Semantic segmentation on ScanNet. Table 2 displays our results on the real-world dataset
ScanNet [7]. While Gaussian Splatting does not surpass NeRF-based GSNeRF [6] in ren-
dering quality on ScanNet, likely due to the high presence of motion blur and other sources
of noise, our proposed method is still capable of consistently outperforming existing meth-
ods in segmentation quality and inference time, both for generalization and finetuning (5k
iterations). The qualitative results in Figure 3 confirm these observations.
Semantic segmentation on ScanNet++. Additionally, we present results on ScanNet++[37].
While this dataset was not publicly available during the publication of prior works [6, 12,
15, 16], ScanNet++ is well-suited for novel view synthesis and generalizable semantic seg-
mentation, exhibiting high-quality images and accurately annotated classes. In Table 3, the
proposed method demonstrates solid performance, enabling future comparisons. Qualitative
results can be found in the supplementary material.

5.3 Ablation study

Robustness of self-supervised features. In this study, we investigate the robustness of the
self-supervised view-independent 3D Gaussian features for a different task: depth prediction.
Quantitative and qualitative results are available in the supplementary material.
Evaluation of view-dependent and view-independent features. Table 4 quantifies the
influence of the synthesized image Îk

j and rendered view-independent 3D Gaussian features
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Figure 3: Qualitative results on Replica and ScanNet. The table presents generalizable (gen.)
and finetuning (ft.) results on Replica (first two rows) and ScanNet (last two rows) for both
rendering (rend.) and semantic segmentation (sem.). Comparisons between RT-GS2 and
Semantic-Ray[15] are made.

VDVI features Loss Semantic - top20 Semantic - all
Îk

j Zk
j LSR LCeCo mIoU mAcc oAcc mIoU mAcc oAcc

Generalization

✗ ✓ ✓ ✓ 37.43 43.87 87.26 27.05 31.49 83.02
✓ ✗ ✓ ✓ 55.57 61.56 93.51 44.41 51.38 89.71
✓ ✓ ✗ ✓ 58.6 65.07 93.92 45.90 54.30 90.13
✓ ✓ ✓ ✗ 58.77 65.38 94.04 47.11 55.59 90.51
✓ ✓ ✓ ✓ 59.24 66.04 93.99 49.11 57.04 90.68

Finetuned
✓ ✓ ✗ ✗ 93.11 96.15 99.16 86.05 91.17 99.07
✓ ✓ ✓ ✓ 92.11 94.81 99.25 92.48 94.80 99.25
✓ ✓ ✗ ✓ 94.31 96.19 99.33 89.34 93.13 99.22

Table 4: Ablation study on Replica [25] for both the 20 most frequent and all classes.

Zk
j. Removal of Îk

j and Zk
j results in significant decreases in mAcc by 22.17% and 4.48%,

respectively. These findings highlight the vital importance of Îk
j for semantic segmentation

performance. Additionally, the inclusion of view-independent features not only enhances
performance but also improves view-consistency, as demonstrated in Figure 1.

Evaluation of loss-terms. In Table 4, we examine the impact of the label smoothing regu-
larizer (LSR) [27] and loss-term LCeCo [41] through ablation. Results show that both compo-
nents contribute positively to generalization performance. While the LSR does not provide
benefits for the top20 frequent classes when finetuned, it increases performance when all
classes are taking into account, suggesting its importance for the less frequent classes.
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6 Limitations
Despite the significant improvements in both performance and speed achieved by RT-GS2,
some limitations exist. While RT-GS2 enhances view-consistency for semantic segmentation
by learning and leveraging view-independent 3D features (as qualitatively demonstrated in
Figure 1), this approach does not fully guarantee strict view consistency across all perspec-
tives. More specifically, while the primary elements of the scene generally remain stable,
minor flickering can occur in smaller regions when the viewpoint changes.

7 Conclusion
This paper presents a novel real-time generalizable semantic segmentation method employ-
ing Gaussian Splatting. Through extensive experimentation, we have demonstrated its su-
periority over existing methods in both semantic segmentation quality and real-time perfor-
mance, achieving significant improvements in mIoU on the Replica dataset and a remark-
able 901 times speedup compared to current approaches. RT-GS2 represents a significant
advancement in the field, providing the first real-time generalizable semantic segmentation
method for 3D Gaussian representations of radiance fields.
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