
16 XIAO ET AL.: ARE SPARSE NEURAL NETWORKS BETTER HARD SAMPLE LEARNERS

A Implementation Details.

A.1 Implementation Details for SNNs

For Sparse Evolutionary Training (SET) method, we start from a random sparse topology
based on Erdôs-Rényi-Kernel (ERK 1)) sparse distribution, and optimize the sparse con-
nectivity through a dynamic prune-and-grow strategy during training. Weights were pruned
considering both negative and positive values, as introduced in [37], and new weights were
added randomly. Throughout the sparse training process, we kept the total number of param-
eters constant. For all experimental setups, the update interval, denoted as ∆T , is configured
to occur every 4 epochs. More implementation details are based on the repository mentioned
in [31].

Single-shot network pruning (SNIP), is a method that aims to sparsify models at the early
of training based on the connection sensitivity score, and the sparse topology is fixed during
training. We implement SNIP based on the PyTorch implementation on GitHub 2 3. As
in [31], we use a mini-batch of data to calculate the important scores and obtain the sparse
model in a one-shot pruning before the main training. After that, we train the sparse model
without any sparse exploration for 200 epochs.

Given the fact that the iterative pruning process of LTH would lead to much larger train-
ing resource costs than dense training and other SNNs methods, we use one-shot pruning
for LTH. For the typical training time setting, we first train a dense model for 200 epochs,
after which we use global and one-shot magnitude pruning to prune the model to the target
sparsity and retrain the pruned model with its original initializations for 200 epochs using
the full learning rate schedule.

For OMP, after fully training dense models on the specific dataset, we prune the models
with one-shot magnitude pruning and re-train them based on pre-trained dense initializations
with the full learning rate schedule for 200 epochs.

GMP gradually sparsifies networks during training according to a pre-defined sparsifica-
tion schedule with sorting-based weight thresholding. The starting and the ending iterations
of the gradual sparsification process are set as 10% and 80% of the entire training iterations.
The frequency of sparsification steps is set to 4 epochs among all tasks. More implementa-
tion details are based on the repository mentioned in [31].

A.2 Models and Datasets for Samples with Intrinsic Complexity

For our experiments, we train ResNet18 [19] on CIFAR-100 [27] and ResNet34 [19] on
TinyImageNet [28]. For optimization, the models are trained for 200 epochs using SGD
with a momentum of 0.9 and weight decay of 5.0e-4. The initial learning rate is 0.1, with
a reduction by a factor of 10 at epochs 100 and 150. The batch size for training data is set
to 128. We repeat the experiments three times with different seeds and plot the mean and
standard deviation for accuracy on test sets.

1The sparsity of the convolutional layer is scaled proportionally to 1− nl−1+nl+wl+hl

nl−1×nl×wl×hl where nl refers to the

number of neurons/channels in layer l; wl and hl are the corresponding width and height ERK is modified based on
ER.

2https://github.com/Eric-mingjie/rethinking-network-pruning
3https://github.com/Shiweiliuiiiiiii/In-Time-Over-Parameterization

Citation
Citation
{Mocanu, Mocanu, Stone, Nguyen, Gibescu, and Liotta} 2018

Citation
Citation
{Liu, Yin, Mocanu, and Pechenizkiy} 2021{}

Citation
Citation
{Liu, Yin, Mocanu, and Pechenizkiy} 2021{}

Citation
Citation
{Liu, Yin, Mocanu, and Pechenizkiy} 2021{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Le and Yang} 2015

XIAO ET AL.: ARE SPARSE NEURAL NETWORKS BETTER HARD SAMPLE LEARNERS 17

A.3 Models and Datasets for Samples with External Perturbing

For training samples with common corruptions, we conduct experiments with various models
on different datasets, including ResNet18 on CIFAR-100 and ResNet-34 on TinyImageNet.
We use the SGD optimizer with a momentum of 0.9 and a weight decay setting of 5e-4.
The initial learning rate is set to 0.1 and decays by a factor of 10 at epochs 100 and 150.
Additionally, we also test a VGG-19 model on the CIFAR-100 dataset. Common image
corruptions, as described in [22], are applied to both training and testing datasets at the same
severity level in our experiments. To ensure reliability, each experiment is repeated three
times with distinct random seeds, and the mean and standard deviation of the results are
reported. For training at low data volumes (e.g. data ratio=0.3), we randomly select 30%
samples from the training set for training.

For training samples with adversarial attack, our experiments involve two popular archi-
tectures, VGG-16 and ResNet-18, evaluated on CIFAR-10 and CIFAR-100, respectively. We
train the network with an SGD optimizer with 0.9 momentum and a weight decay of 5e-4.
The initial learning rate is set to 0.1 and decays by a factor of 10 at epochs 100 and 150. We
utilize the PGD attack with a maximum perturbation of 8/255 and a step size of 2/255. Dur-
ing the evaluation, we apply a 20-step PGD attack with a step size of 2/255, following [9].
We also evaluate both adversarial accuracy on perturbed test data and clean accuracy on test
datasets without adversarial attacks. The performance is evaluated using the final check-
point after training completion. For training at low data volumes (e.g. data ratio=0.5), we
randomly select 50% samples from the training set.

B Additional Experiments on Samples with Image
Common Corruptions

Figure 9 illustrates that, at a training data volume of 0.3, the performance of SNNs becomes
increasingly better than that of dense models when trained with samples affected by common
corruptions, particularly as severity levels rise from 2 to 6. In particular, at a severity level of
2, most SNNs models exhibit performance that is comparable to, or in some cases worse than,
that of dense models. The exception is the OMP method, which consistently outperforms its
dense counterparts, albeit slightly. As the severity level rises to 4, indicating increasingly
challenging and difficult training data, the improved performance of Sparse Neural Network
(SNN) models becomes more pronounced for most sparse models compared to their dense
counterparts. However, as the severity level further increases to 6, the performance enhance-
ment diminishes for some SNNs, suggesting that under extreme severity conditions, both
sparse and dense methods tend to perform worse.

Figure 9: Comparison of dense models and SNNs trained on samples with common corrup-
tions on CIFAR-100 with ResNet18 under training data ratio of 0.3 with a severity level of 2
(a), 4 (b), and 6 (c), respectively. The comparison spans a range of sparsity ratios from 10%
to 90%.

Citation
Citation
{Hendrycks and Dietterich} 2019

Citation
Citation
{Chen, Zhang, pengjun wang, Balachandra, Ma, Wang, and Wang} 2022

18 XIAO ET AL.: ARE SPARSE NEURAL NETWORKS BETTER HARD SAMPLE LEARNERS

C Additional Experiments on Samples with Adversarial
Attack

Figure 10: Comparison of clean and adversarial test accuracy between dense models and
various Sparse Neural Networks (SNNs) methods on CIFAR-10 with VGG16 and CIFAR-
100 with ResNet18 at sparsity levels of 0.8. The performance is evaluated using the final
checkpoint following training completion. (a) and (b) are models trained on full data volume,
(c) and (d) are models trained using only 50% of the training data.

D Remaining Results on Layer-wise Distribution

Figure 11: Comparison of Layer-wise Density Ratios. This figure displays the layer-wise
density ratios for various SNN methods when applied to ResNet18 on CIFAR-100 training
with high EL2N score samples (a), and to VGG19 on CIFAR-100 with common corruptions
samples (b). These comparisons are made at an overall sparsity ratio of 0.8, and data ratios
of 0.5 and 1.0, respectively.

Figure 12: Comparison of Layer-wise Density Ratios. This figure displays the layer-wise
density ratios for various SNN methods when applied to ResNet34 on TinyImageNet training
with high EL2N score samples (a), and with common corruption samples (b) at an overall
sparsity ratio of 0.8 and a data ratio of 0.3.

XIAO ET AL.: ARE SPARSE NEURAL NETWORKS BETTER HARD SAMPLE LEARNERS 19

E Remaining Results on Layer-wise Density Analysis

Figure 13: Accuracy comparison of SNN variants on ResNet34 on TinyImageNet trained
with high EL2N score samples, evaluated at a sparsity level of 0.8 and 0.7. The data ratio is
1.0 (a) and 0.3 (b), respectively.

Figure 14: Accuracy comparison of SNN variants on ResNet34 on TinyImageNet trained
with image common corruption, evaluated at a sparsity level of 0.8 and 0.7. The data ratio is
1.0 (a) and 0.3 (b), respectively.

F Sparse Hardware and Software Support
In literature, most of sparse training methods have not fully capitalized on the memory and
computational benefits offered by Sparse Neural Networks (SNNs). These methods typi-
cally simulate sparsity by applying masks over dense weights because most specialized deep
learning hardware is optimized for dense matrix operations. However, recent developments
in SNNs are increasingly geared towards enhancing both hardware and software support to
fully leverage sparsity advantages. Significantly, hardware innovations such as NVIDIA’s
A100 GPU, which supports 2:4 sparsity [66], and other hardware developments are paving
the way for more efficient SNN implementations [4, 10, 60]. Concurrently, software li-
braries are being developed to facilitate truly sparse network implementations [11, 30]. With
these hardware and software progressions, along with algorithmic improvements, it is be-
coming possible to construct deep neural networks that are faster, more memory-efficient,
and energy-efficient.

Citation
Citation
{Zhou, Ma, Zhu, Liu, Zhang, Yuan, Sun, and Li} 2021

Citation
Citation
{Ashby, Baaij, Baldwin, Bastiaan, Bunting, Cairncross, Chalmers, Corrigan, Davis, van Doorn, Fowler, Hazel, Henry, Page, Shipton, and Steenkamp} 2019

Citation
Citation
{Chen, Yang, Emer, and Sze} 2019

Citation
Citation
{Wang, Ji, Hong, Lyu, Wang, and Xie} 2018

Citation
Citation
{Curci, Mocanu, and Pechenizkiyi} 2021

Citation
Citation
{Liu, Mocanu, Matavalam, Pei, and Pechenizkiy} 2021{}

