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Abstract

While deep learning has demonstrated impressive progress, it remains a daunting
challenge to learn from hard samples as these samples are usually noisy and intricate.
These hard samples play a crucial role in the optimal performance of deep neural net-
works. Most research on Sparse Neural Networks (SNN5s) has focused on standard train-
ing data, leaving gaps in understanding their effectiveness on complex and challenging
data. This paper’s extensive investigation across scenarios reveals that most SNNs trained
on challenging samples can often match or surpass dense models in accuracy at certain
sparsity levels, especially with limited data. We observe that layer-wise density ratios
tend to play an important role in SNN performance, particularly for methods that train
from scratch without pre-trained initialization. These insights enhance our understand-
ing of SNNs’ behavior and potential for efficient learning approaches in data-centric
Al Our code is publicly available at: https://github.com/QiaoXiao7282/
hard_sample_learners.

1 Introduction

In the last decade, deep learning has seen remarkable developments, primarily benefiting
from the increasing training data and the accompanying larger models [39, 43]. This progres-
sion, however, comes with high computational costs and complex optimization challenges.
Recent insights reveal that not all training samples are equally important, with a small subset
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contributing most to the loss [26, 56]. Additionally, studies [5, 34, 35, 63] have shown that
eliminating redundant data and prioritizing training samples based on informatic complexity
can improve efficiency without sacrificing performance.

Investigating the data difficulty not only helps to improve the training efficiency, but also
helps us to understand the principles that govern how deep models process data [2, 5, 17].
Recent studies have demonstrated that training with more challenging samples can lead to
improved generalization [20, 54], offering valuable insights into the intricacies of deep learn-
ing model behavior. Building on the concept of such a training paradigm, researchers have
also started experimenting with the addition of perturbations to input data to make it more
challenging. In a related vein, the focus has shifted towards constructing adversarial sam-
ples, which intentionally perturb inputs to confuse deep learning models, aiming to enhance
model safety and robustness [3, 6]. Concurrently, the introduction of data corruption is being
employed to further advance the comprehension of how deep learning models can be trained
more effectively and securely [44, 50].

However, learning from challenging samples, which are often complex or difficult for
model training, can introduce spurious features [23, 48], increasing the risk of overfitting,
particularly when training data is limited. Sparse Neural Networks (SNNs) [13, 14, 29, 37],
known for efficiently eliminating redundant weights, have shown potential in mitigating
overfitting [21, 25]. While the study of SNNs has primarily focused on standard training
datasets, where they have demonstrated their ability to maintain performance with reduced
computational cost, their behavior under more challenging conditions remains less thor-
oughly explored. This leads to a natural question: Can SNNs perform well when trained on
challenging samples? Studies by [41] and [9] indicate that SNN’s can reduce overfitting when
trained with adversarial samples in standard data volumes. Varma T et al. suggest the Lottery
Ticket Hypothesis (LTH) [14] is effective in smaller data volumes with extensive augmen-
tation [57]. Additionally, He et al. [21] observe the sparse double descent phenomenon
in network pruning, which is caused by model sparsity when addressing overfitting issues.
However, these studies often focus on specific sparse models or isolated scenarios. This
paper aims to answer a broader question: Given the diverse methods for achieving sparsity,
how do SNNs perform with challenging samples across different scenarios, and what factors
contribute to their efficacy in these contexts?

To answer this question, we undertake the exploration through the following avenues:
(1) Samples with intrinsic complexity, where we identify challenging samples using EL2N
(Error L2 Norm) [42] to assess learning difficulty, and (2) Samples with external perturba-
tions, involving adversarial examples that subtly alter inputs to significantly affect model
performance, and more noticeable corruptions like Gaussian noise and blurring to increase
the sample difficulty. Through comprehensive experiments covering a wide range of sparse
methods, model sizes and datasets, our study unveils several nuanced and occasionally sur-
prising findings.

* We systematically analyze the effectiveness of model sparsification on difficulty sam-
ple training, considering the various conceptions of sample difficulty defined above.
Our findings indicate that most SNNs can achieve or even surpass the accuracy of
dense models at certain levels of sparsity.

* We extend our investigation to scenarios with limited training data and find that, in
most cases, SNNs can achieve performance improvements over their dense counter-
parts, even at high levels of sparsity, when trained on challenging samples character-
ized by intrinsic complexity and external perturbations.
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¢ Qur findings suggest that the layer-wise density ratio in SNNs may contribute to the
performance improvement in challenging training scenarios. In particular, maintain-
ing a higher density in shallower layers positively impacts performance, especially in
methods that train from scratch without pre-trained initialization.

2 Related work

2.1 Sparse Neural Networks

Dense to sparse. Dense to sparse training methodologies start with a dense model, and
then strategically eliminate weights in one or several stages, interspersed with retraining
for accuracy recovery. A typical method is Gradual Magnitude Pruning (GMP), which it-
eratively sparsifies weights based on their absolute magnitude, either globally or per layer,
across several training steps [16, 18, 67]. Augmenting this, second-order pruning meth-
ods incorporate second-order information to potentially enhance the accuracy of the pruned
models [51, 58, 65]. Unlike previous methods, retraining starts from a fully or well-trained
dense model, the Lottery Ticket Hypothesis (LTH), restarts from the initial model state [14]
or by rewinding to an earlier stage of the model [7, 15, 45] based on the given binary mask.
In contrast to the aforementioned methods, sparsification can also be achieved from dense
models early in training, before the main training phase, based on certain salience crite-
ria [29, 55, 59].

Sparse to sparse. Unlike dense-to-sparse methodologies, where sparsification heav-
ily relies on dense models, sparse-to-sparse training usually starts with a randomly ini-
tialized sparse topology before training. This training paradigm, starts with the initial-
ization of a sparse subnetwork, followed by either maintaining its connectivity statically
[36] or periodically searching for the optimal sparse connectivity through prune-and-regrow
strategy [31, 37, 62] during training. For prune-and-regrow strategy, there exist numerous
pruning criteria in the literature, including magnitude-based pruning [13, 31, 61], weight-
balanced pruning [37], and gradient-based pruning [40, 64]. On the other hand, the crite-
ria used to regrow weights back include randomness [37, 38], momentum [12], and gradi-
ent [13,24,31].

2.2 Learning on Hard Samples

Numerous studies have sought to define sample difficulty, shedding light on how deep neu-
ral networks evolve their data processing capabilities during training. It has been shown that
deep learning models tend to learn difficult data later in the training process [1, 5]. Fur-
thermore, training with hard samples has been found to accelerate the optimization of deep
learning networks under enough training data volumes [47, 49]. Meanwhile, in the pursuit of
learning efficiency, it has been demonstrated that training with a harder subset can maintain
final performance [5, 34, 35].

On the other hand, deep neural networks (DNNs) are susceptible to malicious attacks,
where specially perturbed inputs, known as adversarial samples, are crafted to challenge
these models and train with them to improve their robustness [8, 46, 52, 53]. However, this
training method has been observed to result in substantial robust generalization gaps, a phe-
nomenon known as robust overfitting. Recently, sparse models have been proven to achieve
better robust generalization [9, 41] and prevent overfitting problems [21] while achieving
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more efficient training. However, these observations are under standard training data vol-
umes, utilizing the full training dataset.

Unlike prior work, this paper systematically evaluates the effectiveness of SNNs learning
on challenging samples, which are defined across a broader spectrum of scenarios. We also
compare different sparsification methods and extend the exploration under reduced training
data volumes.

3 Methodology and Evaluation

3.1 Sparse Neural Networks

In this paper, we primarily focus on unstructured sparsity, as these methods have been exten-
sively studied in the literature, benefit from established benchmarks, and provide an optimal
trade-off between accuracy and compression. To have a unified framework for SNNs, we use
binary masks to simulate the implementation of model sparsity. Given a dense network with
parameters 6; € R%, where d, is the dimension of the parameters in each layer / € {1,...,L},
the sparse neural networks can be facilitated as 6; © M;, where M; € {0, l}d’ donates layer-
wise binary mask, and ® is the elementwise product. The sparsity ratio is determined by
the fraction of weights set to zero, calculated as s = 1 — Y, ||[My|lo/Y;d;. We choose the
following representative sparsity methods for analysis:

* Gradual Magnitude Pruning (GMP), as introduced in [16, 67], starting from a dense
model, progressively sparsifies networks from dense model during training, by using the
weight magnitude as the criterion for sparsity.

 Lottery Ticket Hypothesis (LTH) proposed by [14] is another commonly used sparsity
method. It iteratively employs magnitude pruning during training to create binary masks and
then re-trains using weights from step ¢. In our experiments, we set = 0, which means we
re-train with the initialized weights.

* Magnitude After Training (OMP), which follows dense model training on a specific
task, facilitates one-shot pruning using weight magnitude as the criterion, and then re-trains
the model using the full learning rate schedule, we follow the setting as in [32].

* SNIP [29] is a typical prior-training pruning technique that globally removes weights
with the lowest connection sensitivity score defined by |0|-|VgL|, and keeps the sparse
topology of the model fixed throughout training.

* Sparse Evolutionary Training (SET), a pioneering method for dynamic sparse training
proposed by [37], begins with an initially sparse subnetwork and concurrently updates its
topology and weights during training through a dynamic prune-and-grow strategy.

The main implementation setup for SNNs primarily follows [13, 31]. Further details can
be found in Appendix A.1.

3.2 Experiments on Samples with Intrinsic Complexity

In this section, we evaluate the performance of dense and SNN models trained on samples
with intrinsic complexity, as measured by EL2N scores. We first train a model on the entire
dataset to calculate these scores and then classify the top 50% of samples with the highest
scores as hard samples. Subsequently, we retrain the models from scratch on this challenging
subset. We conduct experiments using ResNet18 for CIFAR100 and ResNet34 for Tinylma-
geNet. Details on model training and sparsity are provided in Appendix A.2.
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Figure 1: Examples of five CIFAR-100 training images for two randomly selected classes
(apple and bus), showcasing those with the higher and lower EL2N scores. Images with
lower scores typically feature simpler backgrounds and clear objects, whereas those with
higher scores frequently display complex backgrounds or color biases.

3.2.1 EL2N Scores Based Measurements

The EL2N (Error L2 Norm) score, as proposed by [42], is defined as the L2 distance between
the model predicted probability and the one-hot label of the sample. Given a training sample
(x,y), the EL2N score is defined as: E||p(x;0)—y||,, where p(x;0) = o(f(x;0)) denotes
the neural network output in the form of a probability vector, and ¢ is the softmax function.

Intuitively, samples with higher EL2N scores are often seen as more challenging and are
therefore categorized as having intrinsic complexity in our paper. In Figure 1, we provide
examples of samples with both higher and lower EL2N scores to illustrate how they help in
identifying samples with intrinsic complexity.

ResNet18 on CIFAR100 (Data Ratio=0.5)

ResNet34 on TinylmageNet (Data Ratio=0.5) ResNet18 on CIFAR100 (Data Ratio=0.3) ResNet34 on TinylimageNet (Data Ratio=0.3)

1 20 30 40 50 60 70 8 90 10 20 30 40 50 60 70 8 90 0 20 30 40 50 60 70 8 90
sparsity Ratio (%) sparsity Ratio (%) Sparsity Ratio (%)

(a) (b) (©)

0 20 30 40 50 60 70 8 90
Sparsity Ratio (%)

(d)

Figure 2: Comparison of dense and SNNs models trained with EL2N score-filtered samples
across CIFAR100 and TinyImageNet, with sparsity ratios from 10% to 90%. Sub-figures (a)
and (b) display results trained with top 50% filtered samples, while sub-figures (c) and (d)
show results from the top 30% filtered samples.

Results and Analysis: We observe that ResNet18 on CIFAR100

most SNNs methods are able to consistently
match or even surpass dense models when
trained on samples with intrinsic complexity on
both CIFAR-100 and TinyImageNet datasets at
a data ratio of 0.5. Specifically, as illustrated in
Figure 2 (a) and (b), methods like SET or SNIP
demonstrate superior performance compared to
dense models, especially at higher sparsity lev-
els. However, the LTH method exhibits a de-
cline in performance, which suggests that when
trained with hard samples, the masks derived
from pre-trained models might not be optimal
for the LTH approach.

o = owm

o

Fraction of Data Kept

01 02 03 04 05 06 07 08 09
: pA
ACCser — ACCpense(%)

1

Y sparsiy Ratio
Figure 3: The comparison covers spar-
sity ratios and data ratios ranging from
10% to 90% on CIFAR-100 dataset using

ResNet18.


Citation
Citation
{Paul, Ganguli, and Dziugaite} 2021


6 XIAO ET AL.: ARE SPARSE NEURAL NETWORKS BETTER HARD SAMPLE LEARNERS

At low training data volumes (e.g. data ratio=0.3), most SNNs tend to offer more advan-
tages over their dense counterparts, especially when sparsity levels are higher. From Figure 2
(c) and (d), we can find that SET and SNIP considerably outperform their dense counterparts,
especially at higher sparsity levels, when trained with only 30% of the harder data. More-
over, to be more specific, consider the SET method as an example. As shown in Figure 3,
when trained on a reduced dataset size, such as only 20% of the training data, SNNs trained
with SET can significantly outperform dense models in test accuracy, particularly at higher
sparsity levels. This suggests that training with less data may more easily lead to overfitting
in dense models, potentially degrading their performance.

3.3 Experiments on Samples with External Perturbing

In this section, we will introduce two different types of data perturbations for training datasets.
The first type consists of common corruptions such as Gaussian noise, blurring, or other vis-
ible image degradations. The second type involves adversarial attacks, which are impercep-
tible to the human eye but can substantially impact model performance.

3.3.1 Samples with Common Curruptions

We evaluate the performance of SNNs and dense models trained on samples impacted by
common image corruptions, which introduce visible distortions that shift the data distribution
from the original dataset. These distortions, often encountered in real-world applications,
include Gaussian noise, impulse noise, and defocus blur. Following the methodology in [22],
we applied these image corruptions to the datasets for a more comprehensive assessment.
We conduct experiments using ResNet18 and VGG19 for CIFAR-100, and ResNet34 for
TinyImageNet, with further details on model training and sparsity provided in Appendix A.3.

ResNet18 on CIFAR100 (Data Ratio=1.0) ResNet34 on TinylmageNet (Data Ratio=1.0) ResNet18 on CIFAR100 (Data Ratio=0.3) ResNet34 on TinylmageNet (Data Ratio=0.3)
ur a1

- Dense

- seT

555~ s
-

—4— omMp
amp

227 4 omp
e

54.01
10 20 30 40 S0 60 70 8 90 10 20 30 40 S0 60 70 8 90 10 20 30 40 S0 60 70 8 90 10 20 30 40 S0 60 70 8 90
Sparsity Ratio (%) Sparsity Ratio (%) Sparsity Ratio (%) Sparsity Ratio (%)

(@ (b) (© @

Figure 4: Comparison of dense and SNNs training on samples with common corruptions
across CIFAR100 and TinyImageNet datasets with sparsity ratios ranging from 10% to 90%.
The sub-figures (a) and (b) showcase experiments conducted on full data volume, while the
last two (c¢) and (d) are conducted on a 30% data ratio.

Results and Analysis: In our experiments, Figure 4 presents the main results with these
corruptions applied at severity level 5, with additional results for levels 2, 4 and 6 pro-
vided in Appendix B. We observe that SNN methods can perform comparably to or even
surpass dense models when trained with samples affected by common corruptions on both
the CIFAR-100 and TinyImageNet datasets at certain sparsity ratios. Specifically, under full
training data conditions, as shown in Figure 4 (a) and (b), most SNNs methods can outper-
form dense models mainly at lower sparsity ratios. This is likely because SNNs at higher
sparsity ratios may have a reduced capacity to learn from a large number of challenging
examples. Meanwhile, the LTH method requires a lower sparsity ratio to maintain decent
performance, as the masks obtained from challenge samples pre-training models may not be
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ideally suited for the LTH methodology, the finding is consistent with the previous observa-
tion.

At lower training data volumes (e.g., VG618 onCIFARIOD DataRato=t0) | VGG19on CIFARIOD Oata Rato-03)
data ratio = 0.3), SNNs generally demon- N e
strate greater benefits compared to their (=
dense counterparts, particularly at higher
sparsity levels. In particular, SET and SNIP + A
outperform their dense model, especially at B M W
higher sparsity levels, as shown in Figure 4 @ ©
(c), (d), and Figure 5 (b). This performance
enhancement is likely due to SNNs’ abil-

3 -~ Dense
<35.2f 4 ser
- sup

Figure 5: Comparison of dense models and
) - Sy ) SNNs trained with samples with common cor-
ity to mitigate overfitting issues when train- ruptions using VGG19 on CIFAR-100, under
ing with challenging samples under limited  £,11 data volume (a) and 30% data volume (b).

data conditiogs, a capacit.y that has been  Thjs comparison spans a range of sparsity ra-
demonstrated in other studies [21, 25]. tios. from 10% to 90%.

3.3.2 Samples with Adversarial Attack

PGD Attack and PGD Adversarial Training: Adversarial samples are special instances
perturbed by well-designed changes with the purpose of confusing deep learning models.
We conduct experiments using the well-known Projected Gradient Descent (PGD) attack
method [33] for generating adversarial samples. The perturbations at ¢ + 1 can be defined as
follows:

8" =projp [6' + ot-sgn (VL (f (x+8":6),y))] M

with a step size o, where P is the set & : |||, < &, and the ¢, norm of the perturbation
d is constrained to a small constant €. During training, the optimization problem is trans-
formed into a min-max problem: ming E(, ,)cp max s, <e L(f(x+8;0),y), where f(x;0) is
a network parameterized by 6, and the input data (x,y) € D are combined with the pertur-
bation 0 to generate adversarial samples, which are then used to minimize the empirical loss
function L.

Our experiments involve two popular architectures, VGG-16 and ResNet-18, evaluated
on CIFAR-10 and CIFAR-100, respectively. We assess both adversarial accuracy on per-
turbed test data and clean accuracy on unperturbed datasets. The performance is evaluated
using the final checkpoint after training completion. Further details on model training and
sparsity are provided in Appendix A.3.

CIFAR-10 (Data Ratio=1.0) CIFAR-100 (Data Ratio=1.0) CIFAR-10 (Data Ratio=0.5) CIFAR-100 (Data Ratio=0.5)

0 0
perse  SEL g v g e pers®  SET oW qwf g oot S oW W g o oot ST g o g g
Methods Methods Methods Methods

(a) (b) (© (d)
Figure 6: Comparison of clean and adversarial test accuracy between dense models and
various SNNs methods on CIFAR-10 with VGG16 and CIFAR-100 with ResNet18 at overall

sparsity levels of 0.9. Sub-figures (a) and (b) are models trained on full data volume, (c) and
(d) are models trained using only 50% of the training data.
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Results and Analysis: When trained with adversarial attack samples at full data volume,
SNNs consistently outperform dense models in clean and adversarial combined accuracy. As
shown in Figure 6 (a) and (b), it is evident that at a sparsity level of 90%, most SNNs for
VGG16 on CIFAR-10 and ResNetl18 on CIFAR-100 maintain comparable clean accuracy
and exhibit superior adversarial accuracy. This is consistent with findings from [9], which
suggest that SNN's can mitigate overfitting issues when training with adversarial attack sam-
ples. Among the SNNs methods, SET slightly stands out in performance across both datasets
slightly. Specifically, for ResNet18 on CIFAR-100, SET demonstrates superior results, while
LTH and OMP show slightly lower adversarial accuracy compared to other SNN methods.

At low training data volumes, using only 50% of the training data, SNNs can also out-
perform the dense model in terms of clean and adversarial combined accuracy in most cases.
As in Figure 6 (c) and (d), at a sparsity level of 90%, where the adversarial accuracy of SNNs
surpasses that of dense models, a trend consistent with the full data regime. More results on
other sparsity ratios can be found in Appendix C.

4 Empirical Analysis and Discussion

Recognizing the benefits of model sparsity in various challenging sample scenarios, this
section will empirically explore the factors contributing to performance improvements in
sparse neural networks when training with hard samples.

4.1 Which Layers Are Getting Sparsified?

In Sparse Neural Networks (SNNs), the layer-wise density ratio indicates the proportion of
non-zero parameters in each layer. Given that SNNs perform differently when trained with
challenging samples, our initial investigation aims to explore how the layer-wise density ratio
is distributed across various SNN methods.
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Figure 7: Layer-wise density ratio comparison. This figure compares the layer-wise density
ratios of different SNN methods applied to ResNet18 on CIFAR-100 with high EL2N score
samples (a), and VGG19 on CIFAR-100 under common corruption scenarios (b) at an overall
sparsity ratio of 0.8 and a data ratio of 0.3.

We visualize the layer-wise density ratios for SNN models, focusing on the convolutional
layers of CNN architectures. Figure 7 (a) and (b) show notable variations in layer-wise
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Figure 8: Accuracy comparison of SNN variants on ResNetl18 on CIFAR-100 with high
EL2N scores (a) and corruption samples (b), at 0.8 sparsity ratio and 0.3 data ratio. Compar-
ative analysis of training FLOPs, test accuracy, and parameters for SNNs vs. dense models
(c, d). ResNetl8 on CIFAR-100 with EL2N scores (c) and corruption samples (d). Larger
circles indicate models with more parameters.

density ratios for ResNet18 when different SNN methods are applied across various sample
difficulties. It is worth noting that for SET method, we utilize the Erd6s-Rényi-Kernel (ERK)
sparse distribution as in [13, 31], a variation of the Erd6s-Rényi (ER) model [37]. Methods
like SET and SNIP tend to maintain higher density ratios in shallower layers and lower ratios
in deeper layers, consistently across scenarios (see Appendix D for more results). The ERK
sparse distribution used in SET for ResNet18 and VGG19 results in higher density ratios in
shallow layers (details in Appendix A.1). Other SNN methods determine sparse distributions
during training and achieve a more uniform distribution compared to SET and SNIP.

4.2 The Role of Layer-wise Density Ratios in SNN Performance

Can SNN models with similar layer-wise density ratios achieve comparable performance?
To answer this, we explore three additional SNN variants: (1) OMPggg: Maintains the same
layer-wise density ratio as the ERK distribution. It involves one-shot pruning on a pre-trained
model using weight magnitudes, followed by retraining with a full learning rate schedule.
(2) Random Pruning: Adheres to the ERK distribution but uses random sparse topology
initialized with binary masks and no pre-trained initialization. The sparse topology remains
fixed throughout training. (3) Uniform Pruning: This method contrasts with the ‘Random
Pruning’ method by applying a uniform density level across all layers, rather than following
the ERK distribution. We trained these methods across different networks and datasets that
vary in sample difficulty, allowing for a comprehensive comparison of their performance.
The results of these experiments are presented in Figure 8 and Appendix E.

The results reveal that SNNs employing an ERK layer-wise distribution perform simi-
larly to or even better than their dense counterparts. Both ERK and SNIP methods prioritize
higher densities in shallower layers, which significantly enhances performance compared to
uniform pruning. This finding underscores the role of layer-wise density ratios in improving
learning in sparse networks. Strategically allocating higher densities to the shallower layers
may help capture essential features in the network, thereby improving the overall perfor-
mance in sparse settings.

Does the layer-wise density ratio tell the whole story when training with hard samples?
The OMP method, which has a lower density in shallower layers, still delivers decent per-
formance (see Figure 4 (a)). This could be attributed to the pre-trained dense model initial-
ization, which has learned to capture essential features in the shallower layers. In contrast,
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LTH, which starts from scratch, performs worse than other methods, even with similar den-
sity ratios to OMP. This suggests that lower density in the shallower layers can be effective
when supported by pre-trained initialization. However, allocating higher densities to the
shallower layers is generally better for SNNs, particularly when training from scratch with-
out pre-trained weights.

4.3 SNNs Win Twice When Learned from Hard Examples

In this section, we compare the performance of various SNN methods, considering not only
test accuracy but also computational cost. Figure 8 shows the top 5 SNNs for each sparse
method, ranked by test accuracy at varying sparsity levels, along with comparisons of train-
ing FLOPs and parameters, based on ResNet18 on the CIFAR-100 dataset (at 0.3 data ratio).
LTH and OMP methods, which derive sparse topology from pre-trained dense models, re-
quire more training FLOPs but with fewer parameters can match dense models in test accu-
racy at certain sparsity levels. Meanwhile, SET and SNIP, which establish sparse topology
before or early in training respectively, outperform dense models in test accuracy while sig-
nificantly reducing training FLOPs and parameters.

5 Conclusion

This paper provides an empirical analysis of Sparse Neural Networks (SNNs) trained on
challenging samples, showing that SNNs often match or exceed the accuracy of dense models
at certain sparsity levels while using fewer computational resources in terms of training
FLOPs and parameters. This advantage is especially significant in limited data contexts.
We find that SNNs with denser connections in shallower layers typically perform better,
particularly when training starts from scratch. Future work will focus on exploring additional
model efficiency methods like structured pruning.
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