Depth-Guided Privacy-Preserving Visual Localization Using 3D Sphere Clouds

Heejoon Moon¹, Jongwoo Lee¹, Jeonggon Kim², Je Hyeong Hong^{*,1,2}

¹Department of Artificial Intelligence, Hanyang University ^{, 2}Department of Electronic Engineering, Hanyang University

Privacy risks in visual localization

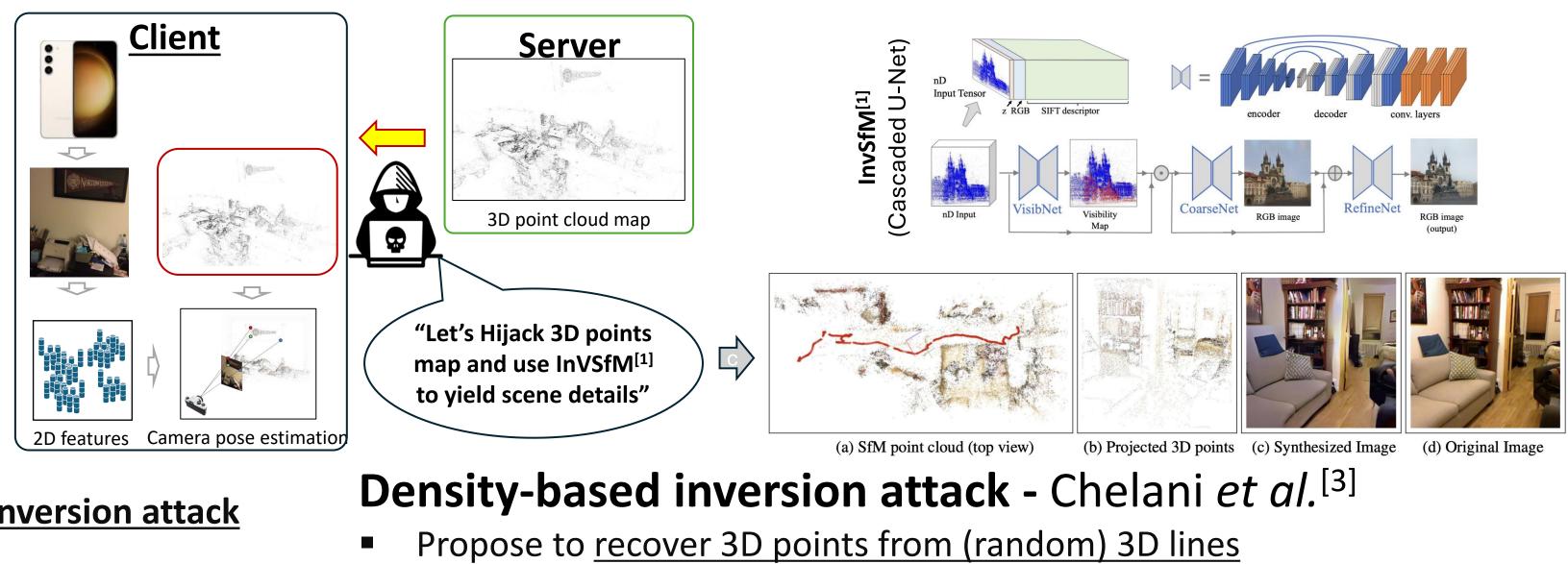
Inversion attack - Pittaluga *et al.*^[1]

- Deep inversion model enables to generate high-fidelity scene details from sparse 3D point cloud map
- Privacy contents in the synthesized image can be exposed! -> <u>"Inversion attack</u>"

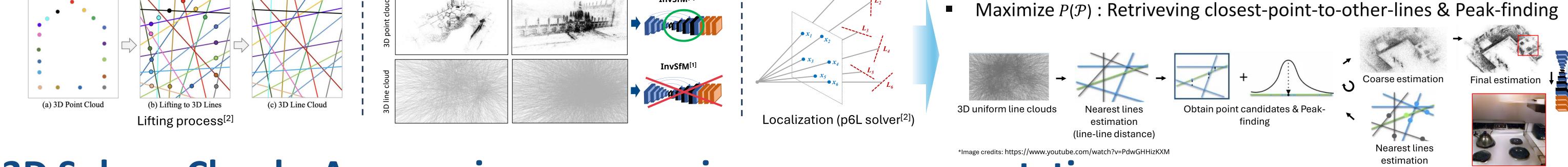
Geometric lifting into 3D lines - Speciale *et al.*^[2]

- <u>Replace 3D points into 3D randomly oriented lines passing through them -> Prevent Inversion attack</u>
- Propose point-6-Line (p6L) minimal solver for visual localization

InvSfM^[1]



- Bayes rule: $P(\mathcal{P}|\mathcal{L}) \propto P(\mathcal{L}|\mathcal{P})P(\mathcal{P})$, $P(\mathcal{L}|\mathcal{P})$ is constant in random lines

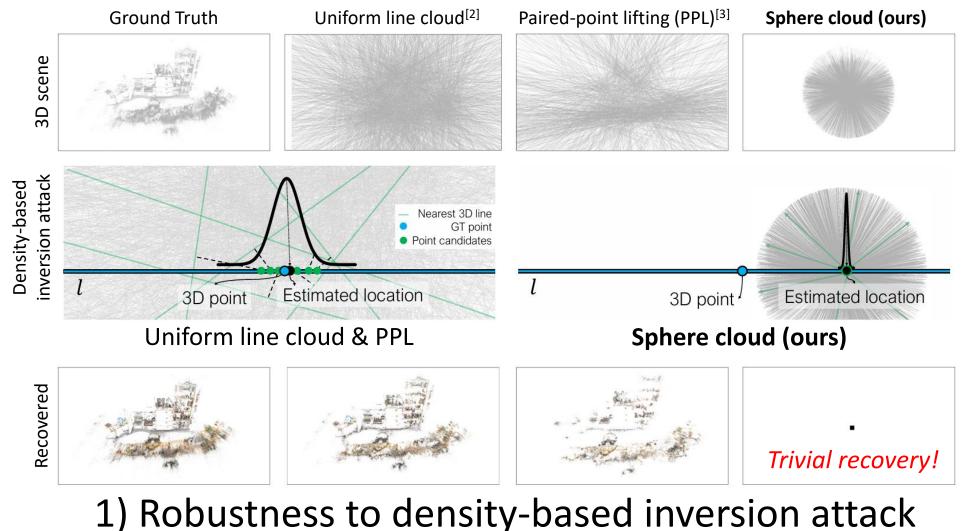


Point cloud

2) Exploring and addressing the potential threat in sphere cloud

3D Sphere Clouds: A new privacy-preserving scene representation

- 1. Completely block the density-based inversion attack^[3] due to the all 3D lines intersect at a sphere center
- 2. Explore a new type of attack from breaching the sphere cloud and present a simple and effective strategy based on sparsification and the reusage of descriptors
- Propose the first privacy-preserving localization framework to leverage depth observations for efficient camera pose estimation 3.



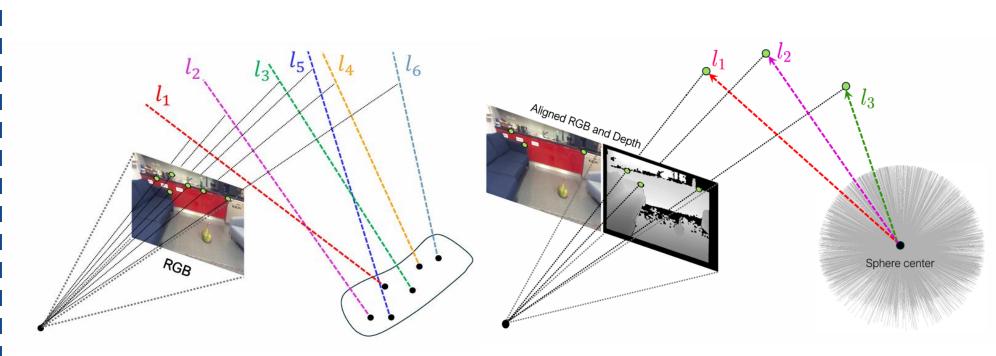
Construction procedure

Projection	Sparsification	Augmentation

- **1. Project** 3D points onto the unit sphere
- **Robust pose estimation with depth regularization**

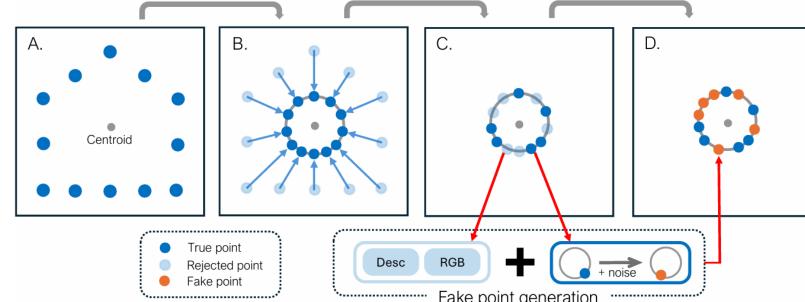
Sphere cloud

• Initial pose: Aligned RGB and Depth \rightarrow Get 3D keypoints -> Efficient p3p solver^[5]



Sphere cloud: P3P minimal solver^[2] (ours) Standard line cloud: P6L minimal solver^[2]

3) Efficient localization via depth measurements



centered at the map centroid and **discard** the portion (η) of sphere point

Red cam: Test camera | Blue cam: Virtual camera at center

- 2. Fake points generation
 - **Position**: gaussian noise to the remaining point
 - **RGB, descriptors:** recycled from rejected points

Addressing potential inversion at center by adding fake points

Effect of true point portion (η)

(b) $\sigma^2 = 0$ (c) $\sigma^2 = 0.01$ (d) $\sigma^2 = 0.1$ (e) $\sigma^2 = 1$ (a) Pseudo-GT

Pseudo-GT η = 25 %

Sphere cloud (ours)

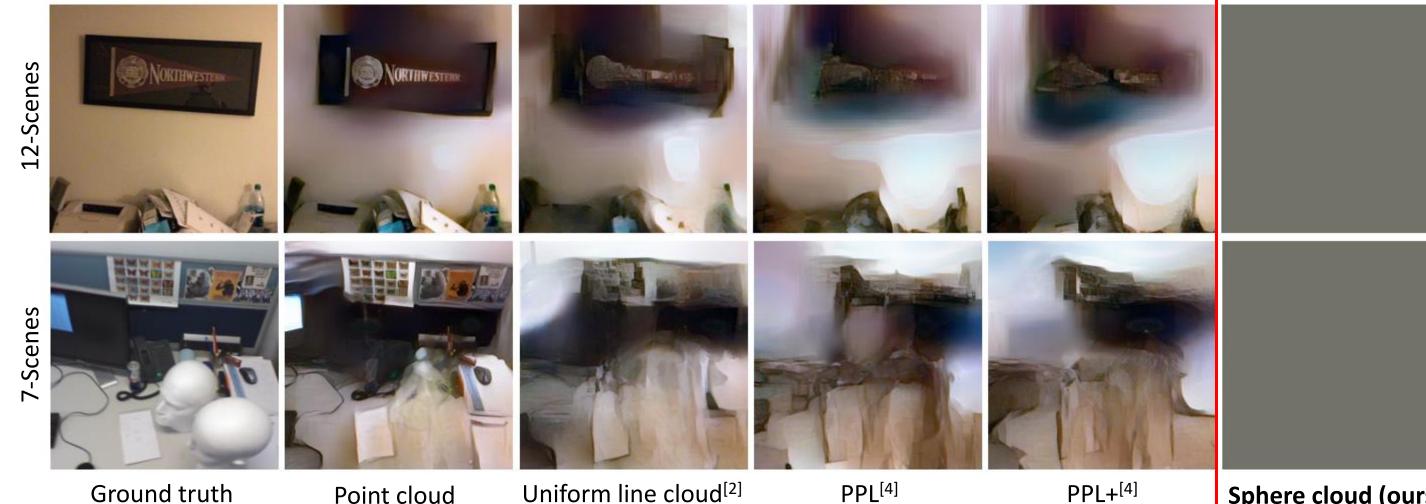
Experimental Results

Qualitative results of inversion attack^[1]

✓ Sphere cloud completely blocks the scene details compared to other 3D representations

nvers

Ground truth



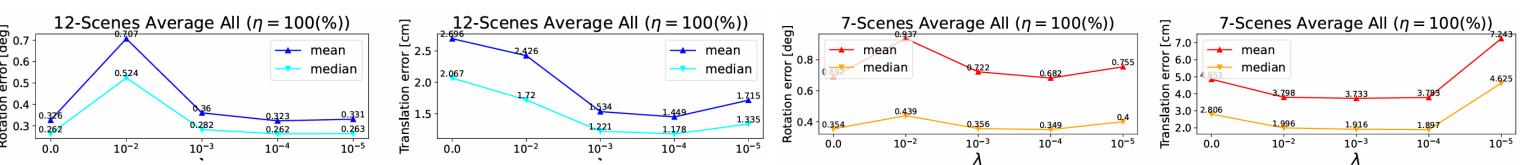
Uniform line cloud^[2]

• Minimizing total cost function (*L*): LO-RANSAC pipeline with non-linear refinement

$$L = \sum_{i \in \Omega} \left(L_i^e + \lambda \ L_i^d \right) \Leftrightarrow L_i^e = \frac{([\mathbf{u}_i^\top, 1] \mathbf{K}^{-\top} \mathbf{E} \ \tilde{\mathbf{x}}_i)^2}{(\mathbf{e}_1^\top \tilde{\mathbf{x}}_i)^2 + (\mathbf{e}_2^\top \tilde{\mathbf{x}}_i)^2} \qquad L_i^d = (\beta_i - 1)^2$$

$$Epipolar \ distance \qquad Depth \ constraint$$

Depth constraint ($\lambda = 10^{-4}$) leads to better localization accuracy than no constraint ($\lambda = 0$)



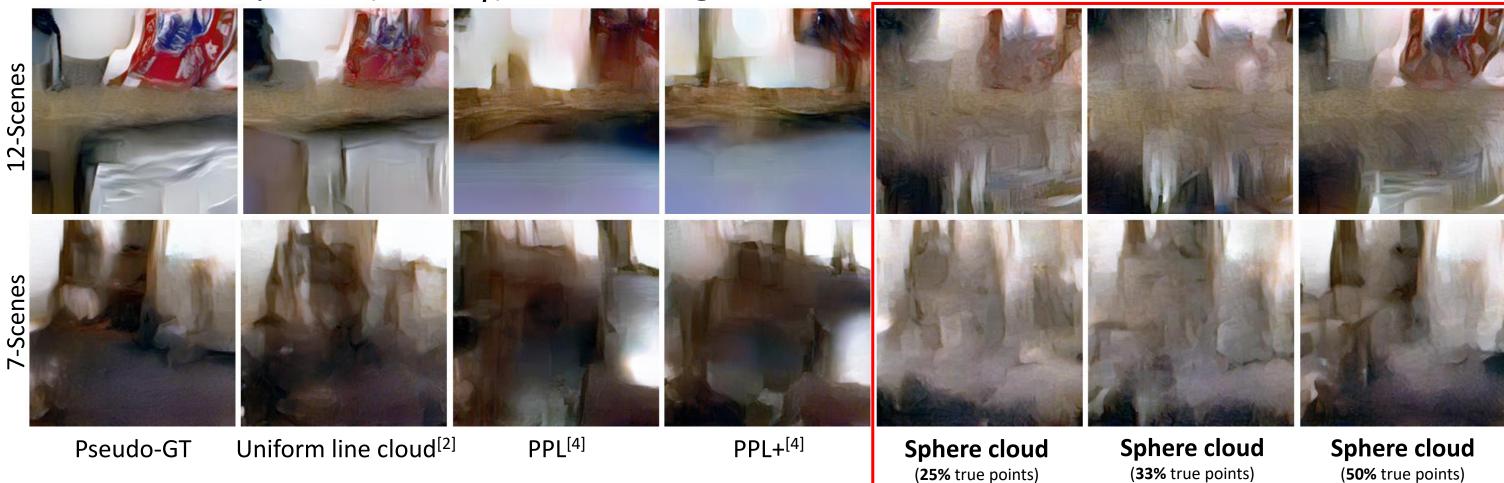
Localization performance

✓ Sphere cloud shows similar localization accuracy among depth-guided localization methods and achieves real-time performance

		Image-based localization			Depth-guided localization						
Dataset	Metric	Point cloud	ULC	PPL	PPL+	DVLAD*	DSAC*	Sphere	Sphere	Sphere (oracle)	Sphere (oracle)
	Wiethe	[25]	[35]	[<mark>16</mark>]	[16]	+R2D2(+D)[13]	(+D)[<mark>2</mark>]	$(\eta = 25\%)$	$(\eta = 33\%)$	$(\eta = 25\%)$	$(\eta = 33\%)$
12-Scenes [<mark>38</mark>]	$\Delta R(^{\circ}) (\downarrow)$	0.139	0.159	0.170	0.168	0.389	0.397	0.300	0.288	0.240	0.232
	$\Delta \mathbf{t}$ (cm) (\downarrow)	0.627	0.727	0.775	0.765	0.931	0.735	1.310	1.282	0.601	0.577
	$\Delta R < 3^{\circ} (\%) (\uparrow)$	100.0	100.0	100.0	100.0	99.73	99.98	99.00	99.34	99.90	100.0
	$\Delta t < 3$ cm (%) (\uparrow)	97.94	95.88	95.16	95.13	97.06	99.21	86.97	87.86	97.22	97.60
	Runtime(ms) (\downarrow)	3	96	91	91	-	84	48	24	22	13
7-Scenes [<mark>33</mark>]	$\Delta \mathtt{R}(^{\circ}) (\downarrow)$	0.174	0.201	0.206	0.207	0.966	0.655	0.438	0.405	0.262	0.255
	$\Delta \mathbf{t}$ (cm) (\downarrow)	0.493	0.613	0.647	0.647	2.857	1.573	2.119	2.051	0.459	0.443
	$\Delta R < 3^{\circ} (\%) (\uparrow)$	100.0	100.0	100.0	100.0	96.11	99.05	97.00	97.58	99.86	99.93
	$\Delta t < 3$ cm (%) (\uparrow)	99.85	99.32	99.12	98.96	55.90	82.81	69.75	70.93	98.21	98.51
	Runtime (ms) (\downarrow)	3	82	78	79	-	80	52	25	31	16

More fake points (small η) leads to degradation of inversion results

Point cloud



PPL^[4]

[1] Pittaluga et al. Revealing Scenes by Inverting Structure from Motion Reconstructions, CVPR 2019

- [2] Speciale et al. Privacy Preserving Image-Based Localization, CVPR 2019
- [3] Chelani et al. How Privacy-Preserving are Line Clouds? Recovering Scene Details from 3D Lines, CVPR 2021
- [4] Lee et al. Paired-point lifting for enhanced privacy-preserving visual localization, CVPR 2023
- [5] Persson et al. Lambda twist: An accurate fast robust perspective three point (p3P) solver, ECCV 2018
- [6] Chelani et al. Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv 2024

Conclusion

- Fully resilient to the density-based inversion attack and address the potential inversion at the center by injecting fake points
- Efficient and real-time performance localization with the guidance of depth measurements
- (Expected) The only privacy-preserving method against the recently proposed geometry inversion^[6]

Limitation and future work

Noises of depth measurement lead to inaccurate localization \rightarrow Improvement via denoising

Acknowledgement

This work was supported by the NRF (National Research Foundation of Korea) grants funded by the Korea government (MSIT) (No. 2022R1C1C1004907)