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Abstract

Detectors trained on well-lit data often experience significant performance degrada-
tion when applied to low-light conditions. To address this challenge, low-light enhance-
ment methods are commonly employed to improve detection performance. However,
existing human vision-oriented enhancement methods have shown limited effectiveness,
which overlooks the semantic information for detection and achieves high computation
costs. To overcome these limitations, we introduce a machine vision-oriented highly
efficient low-light object detection method with the Efficient semantic-guided Machine
Vision-oriented module (EMV). EMV can dynamically adapt to the object detection part
based on end-to-end training and emphasize the semantic information for the detection.
Besides, by lightening the network for feature decomposition and generating the en-
hanced image on latent space, EMV is a highly lightweight network for image enhance-
ment, which contains only 27K parameters and achieves high inference speed. Extensive
experiments conducted on ExDark and DarkFace datasets demonstrate that our method
significantly improves detector performance in low-light environments. Our code is now
available at https://github.com/Zeng555/EMV-YOLO.

1 Introduction
With the advancement of deep learning, object detection models have made remarkable
progress in the field of computer vision. Current object detection models, including the
single-stage YOLO [1, 14, 19, 20, 21, 24] series and the two-stage RCNN [10, 11, 22] se-
ries, are typically trained on high-quality image datasets (e.g. COCO [15], Pascal VOC [8]).
However, these models often miss detections in challenging low-light scenarios, compro-
mising their reliability. To this end, recently, many works have been proposed to improve
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Figure 1: The left part: our method effectively enhances the semantic information of objects
while suppressing background. The right part: the comparison results between our method
and previous methods on ExDark dataset, our EMV achieves superior performance while
containing the fewest parameters.

low-light image visual perception for downstream tasks like object detection, semantic seg-
mentation, and depth estimation.

Generally, low-light object detection can be divided into two frameworks: human vision-
oriented framework and machine vision-oriented framework. The human vision-oriented
framework is a two-stage approach, where the enhancement network and detector are inde-
pendent modules. The enhancement network is typically pre-trained on paired low/normal-
light image datasets. It first enhances the low-light images to well-lit images before feeding
them into the detector for training. On the other hand, the machine vision-oriented frame-
work is the one-stage approach, where the enhancement network and detector are usually
end-to-end connected and optimized together. The enhancement network aims to improve
the detection results rather than optimizing for the brightness enhancement of the image.
However, enhancement networks [12, 17, 25] in human vision-oriented frameworks typi-
cally focus on improving image brightness and color balance for a human-friendly effect,
often neglecting the visual perception requirements of object detection models. This can
degrade semantic information during enhancement, leading to poorer detection of small or
occluded objects. Consequently, as noted by researchers in [4, 18], images optimized for
human vision may not be ideal for low-light object detection.

Furthermore, some enhancement methods overlook inference speed, causing delays in
detection due to the time taken for image enhancement. Most enhancement methods [28, 32]
utilize down-sampling and up-sampling techniques, such as Laplacian pyramids, to enhance
low-frequency information and restore high-frequency details. These approaches can make
the enhancement models overly complex. Even in low-level tasks based on Retinex theory
[13], the use of complex decomposition networks for image enhancement [26, 30, 31] further
hampers detection speed.

To solve the above problems, in this paper, we propose a machine vision-oriented highly
efficient low-light object detection method with the Efficient semantic-guided Machine Vision-
oriented module (EMV). EMV can adapt to the object detection part and improve the per-
formance of the model with end-to-end training. Specifically, EMV decomposes low-light
images into low-level features in the low-level part and enhances the semantic information
in the high-level part.

The low-level task involves decomposing low-light images into two low-level features:
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Reflectance and Illumination. Following the visual physics model of the Retinex Theory, Re-
flectance contains color information, and Illumination contains texture details. Since Retinex
decomposition is a low-level task, we devised a lightweight network to execute the decom-
position, reducing parameter count while effectively completing the task.

In the high-level part, EMV aims to enhance the semantic information of the image for
the detection task. To enhance the semantics of low-light data, both Reflectance and Illumi-
nation information are crucial. Reflectance contains color information, while Illumination
preserves texture details. By adaptively combining these two features, the enhancement can
emphasize object semantics for detection. As shown in the left part of Figure 1, where the
differences between the original and enhanced images are highlighted, we observe that the
foreground objects are brightened.

Inspired by the Latent Diffusion Model [23], we propose a latent feature enhancement
module to enhance the image semantic features in the latent feature space, where enhance-
ment is operated on the low-dimension features rather than the original image, leading to
much less computational cost. Furthermore, we do not adopt the up-sampling process when
generating the enhanced image, which makes our method much more efficient.

We conducted extensive and fair experiments on ExDark [16] and UG2+DarkFace [27]
and achieved superior results compared to state-of-the-art methods in recent years, our ap-
proach has the smallest parameter count, only 27k, making it well-suited for integration into
low-light object detection tasks. The experiments in the right part of Figure 1 demonstrate
our effectiveness. As we can see, with the minimum number of parameters, the proposed
EMV obtains the highest detection accuracy in terms of mAP50 compared with state-of-the-
art low-light object detection methods.

Our contributions can be summarized as follows:

• We introduce the Efficient semantic-guided Machine Vision (EMV) module based on
the Retinex decomposition network, which adaptively balances the reflectance and
illumination information for the detection model.

• To improve the inference speed of EMV, we introduce a lightweight network for fea-
ture decomposition, incorporate Latent Feature Enhancement in latent space, and re-
move the up-sampling phase for image generation. EMV only contains 27K parameter
and exhibits fast processing speed.

• Through extensive and fair experimental comparisons, our method demonstrates su-
perior performance compared to state-of-the-art methods on low-light object detection
tasks.

2 Related Work

In low-light object detection, it can be divided into the following three common paradigms.
Human Vision-oriented Approaches. Such methods typically involve using a pre-

trained low-light image enhancement network to enhance a dataset of low-light images, aim-
ing to restore them as closely as possible to well-lit scenes. Many works [2, 9, 26, 28, 30, 31]
is based on Retinex Theory. Wei et al. [26] combined the Retinex theory with deep learning,
designing a deep network for decomposition and enhancement, and utilized BM3D [6] for
image denoising.
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Machine Vision-oriented Approaches. In such methods, the enhancement networks are
aiming to improve object detection accuracy rather than restoring low-light images to scenes
with good lighting as much as possible. Cui et al. [5] proposed Illumination Adaptive Trans-
former (IAT), by employing an inverse mapping function, the sRGB image is transformed
into its corresponding raw-RGB space, facilitating dynamic adjustment of image brightness
through key parameters in the ISP process, such as gamma values, white balance, and related
color matrices.

Domain Adaption Approaches. In low-light object detection, these methods help pre-
trained models adjust to new scenarios, improving detection performance in low-light condi-
tions. Du et al. [7] introduced DAI-Net, which enhances low-light object detection through
day-night domain adaptation, integrating Retinex theory into a reflectance representation
learning module and introducing an interchange-redecomposition-coherence procedure to
improve image decomposition. However, such methods may encounter challenges in ef-
fectively capturing intricate domain variations, thereby resulting in suboptimal performance
under specific circumstances.

3 Methodology

3.1 Preliminary

The training strategy in existing human vision-oriented low-light object detection methods
involves first through a pre-trained low-light image enhancement model to enhance the low-
light images Ilow to obtain images that closely resembles well-lit conditions (i.e., human
visual quality), denoted as Ihigh. Mathematically, it can be expressed as Equation 1,

Ihigh = E(Ilow). (1)

where E is the enhancement network, Ilow are the low-light images in the original dataset,
and Ihigh are the images in the enhanced dataset. Subsequently, these enhanced images are
used to train the detector, thereby achieving the goal of low-light object detection: D(Ihigh).

In the machine-vision-oriented low light object detection paradigm, both the image en-
hancement and object detection are integrated in the end-to-end manner, which means that
the mapping function takes low-light images as input , i.e., D(Ilow) , and outputs the overall
detection results directly.

3.2 Overview

Our method is designed for machine vision, which can be effectively integrated with de-
tection tasks. The overall framework, as shown in Figure 2, comprises three parts: firstly,
Retinex decomposition (green block in Figure 2), also known as the low-level task (see Sec
3.3), which employs a lightweight shallow network to decompose the low-light image S
into reflectance component R and illumination component I. Secondly, feature enhancement
(light red portion in Figure 2 ), where the two decomposed components are fed into two sep-
arate branches for enhancement, referred to as the high-level task (see Sec 3.4). Finally, the
last part involves merging the two enhanced components [Ī, R̄] to form the enhanced low-
light image S̄. During training, our EMV is end-to-end connected with the YOLOv3 object
detector [20], namely EMV-YOLO. The enhanced images S̄ are then fed into the detector,
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Figure 2: The overview framework of our EMV.

and the gradients calculated from the detection loss are used to simultaneously update the
model parameters of both EMV and YOLOv3.

3.3 Retinex Decomposition
Retinex decomposition is considered a relatively low-level vision task, therefore, we utiliz-
ing a shallow network to effectively accomplish the decomposition task, fdecom(S) = [I,R].
R consists of 3 channels, representing the color details of S, while I is a single-channel repre-
sentation, capturing the texture details of S. The components I and R obtained from Retinex
decomposition do not have a standard ground truth. To enable the reconstruction of the orig-
inal image from I and R (as depicted in the right portion of Figure 4), constraints must be
applied to the model, we employ a L2 loss to constrain the model during the decomposition
process.

Mathematically, this is represented as shown in Equation 2,

Lrecon = min(∑ |S− (I ⊙R)|2). (2)

where S represents the input low-light image, while I and R denote the decomposed illumi-
nation and reflectance components, respectively.

3.4 Latent Feature Enhancement
To better extract high-level information contained in the two components, we deeply encode
the original components to convert them into latent space representations. By reducing the
dimensionality of the feature data, we obtain critical abstractions of the original components.

Semantic Feature Enhancement. The reflectance component R enables us to capture
the semantic information inherent in the low-light image S, thereby facilitating the enhance-
ment of its semantic features.
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Specifically, we apply convolutional layers and down-sampling operations to perform
deep feature extraction on the reflectance component R. The resulting feature map is then
transformed into a semantic matrix M using a Multilayer Perceptron (MLP), capturing es-
sential semantic information contained within the reflectance component R. This process
can be expressed as

M = E(R). (3)

E represents the networks to extract semantic features. Following this, we initialize an iden-
tity matrix, which matches the dimensions of the semantic matrix M. To adjust the semantic
feature of R adaptively, this identity matrix is transformed into learnable parameters, denoted
as Ml . Subsequently, these matrices, along with R, are inputted into our Semantic Attention
mechanism (purple block of the high-level task in Figure 2) to yield an semantic-enriched
reflectance component, R̄. This process is depicted as follows:

Ms = M⊕Ml , R̄ = Ms ⊗R. (4)

where Ms represents a weighted semantic matrix, with its weights being adaptable parame-
ters optimized during training. As illustrated by R̄ in Figure 2, this method effectively en-
hances relevant semantic details in the image, facilitating the distinction between foreground
and background elements, thereby achieving the desired enhancement outcome.

Contrast Adjustment. The illumination component I is decomposed as a single-channel
grayscale image. At this point, the color information of the original image is lost, leaving
only the grayscale information. The removal of color information emphasizes the edge of
the image, thereby making the foreground object more prominent and clear.

Our enhancement method focuses not on altering the brightness of the image, but rather
on fine-tuning the contrast of specific key features within the original illumination compo-
nent, denoted as I. Initially, we employ a neural network to extract a contrast factor, γ . The
factor indicates the contrast levels across different parts of the image. Mathematically, it can
be expressed as γ = E(I). Following this, we introduce a trainable parameter θ and set as the
exponent of γ to fine-tune the texture details: γt = γθ , where γt denotes the adjusted contrast
factor, this adjustment effectively fine-tunes the texture information. Finally, we combine
these features with the original illumination I, thereby adjusting the contrast of the objects
in the image: Ī = γt ⊙ I, where Ī denotes the enhanced illumination.

To enhance both the semantic features of the objects and restore the edge and texture
details, we fuse the two enhanced components to reconstruct the low-light enhanced image S̄
(as depicted in the left portion of Figure 4). This fusion process is mathematically expressed
as S̄ = Ī ⊙ R̄.

3.5 Network Training
During training, our EMV shares the detection loss with the detector. Additionally, our low-
level decomposition task is constrained by a simple extra loss, ensuring that the decomposed
R and I can effectively reconstruct S.

Therefore, the total loss for our low-light object detection consists of two parts: Retinex
reconstruction loss, denoted as Lrecon; YOLOv3 object detecion loss, denoted as Ldetect . The
detecion loss is implemented within MMDetection [3]. Mathematically, total loss used for
training can be represented as

L= Ldetect +λrecon ·Lrecon. (5)

λrecon denote the hyper-parameter assigned to our Lrecon.
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4 Experiments
In this section, we conducted two main experiments: low-light object detection (Sec. 4.1)
and low-light face detection (Sec. 4.2). Furthermore, we conducted several ablation exper-
iments (Sec. 4.3) to evaluate the effectiveness of the proposed modules. Finally, we also
performed efficiency analysis experiments (Sec. 4.4). Our experiments were conducted us-
ing the object detection framework MMDetection [3].

4.1 Low-light Object Detection
Hyper-parameters Settings. This training process fine-tuned a pretrained detection model
on the COCO dataset using the SGD optimizer for 25 epochs. The model was trained with a
batch size of 12, a momentum of 0.9, and a weight decay of 4e-5. A learning rate warm-up
schedule was applied for the first 2,000 iterations, gradually increasing the learning rate to
1e-3, and was then decayed by a factor of 0.1 at the 6th, 11th, and 16th epochs. Loss weight
λrecon in Equation 5 is set to 500.

Dataset. The proposed framework was evaluated on the ExDark dataset, which is a
commonly used real-world dataset for low-light object detection. ExDark dataset consists
of 12 object categories and 7,363 low-light images. To maintain consistency with previous
research in the field [4, 5, 29], we followed a similar data split strategy, allocating 80% of
each category for training and the remaining 20% for evaluation purposes.

The experimental results are presented in Table 1, our EMV-YOLO method outper-
forms other state-of-the-art methods. Approaches such as [9, 12, 17, 20, 30] are human
vision-oriented approaches, while [7] follows a domain adaptation approach. The remain-
ing approaches, [4, 5, 18, 29], are machine vision-oriented. From Table 1, we can observe
that machine vision-based methods generally outperform human vision-based methods. Our
EMV-YOLO achieved the highest mAP among various compared methods, surpassing the
state-of-the-art DAI-Net [7] by 1.4 points. The visualized results can be seen from Figure 3,
in the low-light scene, our method detected all the objects in the Ground Truth, while such as
methods in [5, 9, 12, 17, 18, 29, 30], missed some objects. This demonstrates the superiority
of our method.

Table 1: Detection evaluation on ExDark dataset, the red font indicates the best performance,
while the blue font indicates the second-best performance.

Method Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table mAP50(%)
YOLOv3 79.8 75.3 78.1 92.3 83.0 68.0 69.0 79.0 78.0 77.3 81.5 55.5 76.4

MBLLEN [17] + YOLOv3 81.9 76.6 78.2 91.1 84.5 69.3 69.0 78.3 77.8 73.3 81.5 54.0 76.3
KinD [30] + YOLOv3 80.9 75.0 75.8 93.3 82.4 69.4 69.2 79.0 76.9 76.3 79.6 55.4 76.1

Zero-DCE [12] + YOLOv3 81.2 75.0 75.7 93.4 83.2 67.7 70.2 76.4 74.1 77.7 81.3 55.5 75.9
PairLIE [9] + YOLOv3 80.8 78.3 76.8 90.5 84.5 66.8 69.1 75.6 78.9 73.7 80.3 54.5 75.8

DAI-Net [7] 83.8 75.8 75.1 94.2 84.1 74.9 73.1 79.2 82.2 76.4 80.7 59.8 78.3
MAET [4] 83.1 78.5 75.6 92.9 83.1 73.4 71.3 79.0 79.8 77.2 81.1 57.0 77.7
DENet [18] 80.9 79.2 80.1 90.7 84.5 70.7 72.0 79.3 80.1 76.7 82.4 58.0 77.9

PE-YOLO [29] 84.7 79.2 79.3 92.5 83.9 71.5 71.7 79.7 79.7 77.3 81.8 55.3 78.0
IAT-YOLO [5] 79.8 76.9 78.6 92.5 83.8 73.6 72.4 78.6 79.0 79.0 81.1 57.7 77.8

EMV-YOLO (ours) 82.8 79.7 79.8 94.1 84.7 74.3 74.1 83.1 82.7 78.1 83.6 59.3 79.7

4.2 Low-light Face Detection
Hyper-parameters Settings. The main hyper-parameter settings remain consistent with
previous section (Sec. 4.1); the only difference is the learning rate decay strategy, which
now occurs at the 8th and 16th epochs.
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Figure 3: The visualized results on the ExDark dataset demonstrate that our EMV-YOLO
model surpasses other methods in detecting objects in low-light scenes.

9Method Type mAP50(%)
YOLOv3 baseline 48.3

MBLLEN [17] + YOLOv3
Human Vison

51.6
KinD [30] + YOLOv3 51.6

Zero-DCE [12] + YOLOv3 54.2
PairLIE [9] + YOLOv3 55.4

DAI-Net [7] Domain Adaptation 57.0
MAET [4]

Machine Vision

55.8
DENet [18] 51.2
PE-YOLO 51.1

IAT-YOLO [5] 53.1
EMV-YOLO (ours) 57.6

Table 2: Detection evaluation on DarkFace
dataset.

Method Lrecon λrecon ExDark UG2+DarkFace
YOLOv3 × × 76.4 48.3

EMV-YOLO (ours)

✓ 0 78.2 53.3
✓ 300 79.4 53.6
✓ 400 79.4 52.7
✓ 500 79.7 57.6
✓ 600 79.1 56.2

Table 3: Ablation study for our method with
different loss weight λrecon.

Dataset. We conduct evaluation experiments on UG2+DarkFace dataset. DarkFace is
a low-light face detection dataset in real-world scenarios, comprising 6,000 images. We di-
vided the images into a training set of 5,400 images and a testing set of 600 images, following
the division approach used [4].

We compared our method with the same methods as in previous section (Sec. 4.1). As
shown in the Table 2, our approach continues to achieve excellent results, outperforming the
state-of-the-art method DAI-Net [7] by 0.6 points.

4.3 Ablation Study

Optimal Loss Weights. This study aims to determine the optimal weight for the Lrecon loss
used to rectify the Retinex decomposition. As indicated in Table 3, the best results were
achieved when λrecon=500 on both datasets, we hence adopted λrecon=500 as the optimal
weight for the Lrecon loss.
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Retinex Decomposition Encoder. This study aims to assess the difference between our
decomposition module (the module in the green block in Figure 2) and the decomposition net
used in RetinexNet [26]. During experiments, we individually tested these two different de-
composition modules in the end-to-end machine vision-oriented object detection framework.
As demonstrated in Table 4, when the framework utilized our proposed encoder, it achieved
superior performance with model parameter of only 27k. In contrast, the decomposition net
of [26] resulted in a parameter count exceeding 8 times more, and with less improvement in
detection accuracy. This result confirms the efficacy of our decomposition encoder.

Table 4: Ablation study on different Retinex Decompostion Net.
Method RetinexNet [26] Ours Parameters (K) ExDark UG2+DarkFace

YOLOv3 × × × 76.4 48.3

EMV-YOLO (ours) ✓ × 225.3 76.6 52.8
× ✓ 27 79.7 57.6

Feature Enhancement Modules. This study aims to evaluate the effectiveness of our
feature enhancement modules. Our Retinex decomposition encoder is used by default, where
the decomposition is performed prior to the enhancement. The module tailored for enhancing
the illumination component is termed as Illumination Enhancement Module (IEM), while
the module dedicated to enhancing the reflectance component is referred to as Reflectance
Enhancement Module (REM). In our experiments, we evaluated three configurations: (i)
neither module was used to enhance the original I and R components; (ii) only one of the
modules was employed to enhance either the I or R component; (iii) both modules were
utilized concurrently to enhance the I and R components. As shown in Table 5, compared
to the baseline [20], use each of the single module could improve the mAP50 accuracy on
both ExDark and UG2+DarkFace datasets, respectively, while the combined usage of both
modules yielded the best performance. The same outcome can be seen from the visualization
results shown in the left part of Figure 4 as well.

Table 5: Ablation study on each enhancement module of the our model.
Method IEM REM Parameters (K) ExDark UG2+DarkFace

YOLOv3 × × × 76.4 48.3

EMV-YOLO (ours)

× × 9.6 78.7 52.4
✓ × 16 79.1 54.1
× ✓ 20 78.9 53.7
✓ ✓ 27 79.7 57.6

Table 6: Efficiency analysis.
Method Type Parameters Runtime (ms) FLOPs (G)

MBLLEN [17]

Human Vision

450K 38.1 81.98
KinD [30] 8M 14.8 54.17

Zero-DCE [12] 79K 4.7 23.44
PairLIE [9] 342K 13.6 100.91
DENet [18]

Machine Vision

45K 3.3 1.42
PE-YOLO [29] 91K 32.2 8.11
IAT-YOLO [5] 91K 13.8 6.48

EMV-YOLO (ours) 27K 4.1 5.17
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S
Input: S Enhanced: Differences: 'F

I I RR
S

Figure 4: The left portion illustrates the enhancement results through the latent feature en-
hancement. The right portion demonstrate the decomposed components I and R that are
trained from Lrecon constraint can be well reconstructed as the original low-light image S.

4.4 Efficiency Analysis
To investigate the parameters, inference time (measured in ms), and computational complex-
ity (measured in GFLOPs) of different methods, we evaluate the efficiency of comparison
models with a 3-channel, 544× 544-pixel input image on a single RTX 3090 GPU. As can be
seen from Table 6, our proposed EMV-YOLO exhibits the lowest parameter amount and the
second lowest runtime and computational load among all compared methods, demonstrating
our superior performance in efficiency.

5 Conclusion
In this paper, we propose a Efficient semantic-guided Machine Vision-oriented module for
low-light object detection, namely EMV. Toward improving the efficiency and performance
of machine vision-oriented low-light object detection, this module decomposes the low-light
images by using a lightweight decomposition encoder based on Reintex theory, and further
enhances the objects’ semantic information and texture details in a latent feature enhance-
ment process, this enhances the semantic information of objects while suppressing back-
ground. EMV is embedded and optimized in the end-to-end object detection framework.
Extensive experiments on both the low-light object and face detection tasks demonstrate that
the proposed EMV-YOLO outperforms state-of-the-art methods in terms of both detection
accuracy and model complexity.

Acknowledgement
This work is supported by the Key Project of Chongqing Technology Innovation and Ap-
plication Development (Grant No. cstc2021jscx-dxwtBX0018), the Natural Science Foun-
dation of Chongqing (Grant No. CSTB2022NSCQ-MSX0493), National Natural Science
Foundation of China (Grant No. 62306053), the Graduate Innovation Project of Chongqing
University of Technology (Grant No. gzlcx20233250).



XIN FENG, JUNXIAN ZENG, SIPING WANG, ZHENWEI HE: EMV 11

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal

speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[2] Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, and Yulun Zhang.
Retinexformer: One-stage retinex-based transformer for low-light image enhancement.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 12504–12513, 2023.

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong
Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetec-
tion: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155,
2019.

[4] Ziteng Cui, Guo-Jun Qi, Lin Gu, Shaodi You, Zenghui Zhang, and Tatsuya Harada.
Multitask aet with orthogonal tangent regularity for dark object detection. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
2553–2562, 2021.

[5] Ziteng Cui, Kunchang Li, Lin Gu, Shenghan Su, Peng Gao, ZhengKai Jiang, Yu Qiao,
and Tatsuya Harada. You only need 90k parameters to adapt light: a light weight
transformer for image enhancement and exposure correction. In 33rd British Machine
Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022. BMVA
Press, 2022.

[6] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image
denoising with block-matching and 3d filtering. In Image processing: algorithms and
systems, neural networks, and machine learning, volume 6064, pages 354–365. SPIE,
2006.

[7] Zhipeng Du, Miaojing Shi, and Jiankang Deng. Boosting object detection with zero-
shot day-night domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12666–12676, 2024.

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International Journal of
Computer Vision, 88:303–338, 2010.

[9] Zhenqi Fu, Yan Yang, Xiaotong Tu, Yue Huang, Xinghao Ding, and Kai-Kuang Ma.
Learning a simple low-light image enhancer from paired low-light instances. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 22252–22261, 2023.

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1440–1448, 2015.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the



12 XIN FENG, JUNXIAN ZENG, SIPING WANG, ZHENWEI HE: EMV

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 580–587,
2014.

[12] Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong,
and Runmin Cong. Zero-reference deep curve estimation for low-light image enhance-
ment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1780–1789, 2020.

[13] Edwin H Land. The retinex theory of color vision. Scientific american, 237(6):108–
129, 1977.

[14] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke,
Qingyuan Li, Meng Cheng, Weiqiang Nie, et al. Yolov6: A single-stage object detec-
tion framework for industrial applications. arXiv preprint arXiv:2209.02976, 2022.

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.

[16] Yuen Peng Loh and Chee Seng Chan. Getting to know low-light images with the
exclusively dark dataset. Computer Vision and Image Understanding, 178:30–42, 2019.

[17] Feifan Lv, Feng Lu, Jianhua Wu, and Chongsoon Lim. MBLLEN: low-light im-
age/video enhancement using cnns. In British Machine Vision Conference 2018, BMVC
2018, Newcastle, UK, September 3-6, 2018, page 220. BMVA Press, 2018.

[18] Qingpao Qin, Kan Chang, Mengyuan Huang, and Guiqing Li. Denet: Detection-
driven enhancement network for object detection under adverse weather conditions. In
Proceedings of the Asian Conference on Computer Vision (ACCV), pages 2813–2829,
2022.

[19] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7263–
7271, 2017.

[20] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 779–788, 2016.

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28, 2015.

[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–
10695, 2022.



XIN FENG, JUNXIAN ZENG, SIPING WANG, ZHENWEI HE: EMV 13

[24] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7464–7475, 2023.

[25] Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap Pui Chau, and Alex Kot.
Low-light image enhancement with normalizing flow. In 36th AAAI Conference on
Artificial Intelligence, AAAI 2022, pages 2604–2612. Association for the Advancement
of Artificial Intelligence, 2022.

[26] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition
for low-light enhancement. In British Machine Vision Conference 2018, BMVC 2018,
Newcastle, UK, September 3-6, 2018, page 155. BMVA Press, 2018.

[27] Wenhan Yang, Ye Yuan, Wenqi Ren, Jiaying Liu, Walter J Scheirer, Zhangyang Wang,
Taiheng Zhang, Qiaoyong Zhong, Di Xie, Shiliang Pu, et al. Advancing image under-
standing in poor visibility environments: A collective benchmark study. IEEE Trans-
actions on Image Processing, 29:5737–5752, 2020.

[28] Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Diff-retinex: Rethink-
ing low-light image enhancement with a generative diffusion model. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 12302–
12311, 2023.

[29] Xiangchen Yin, Zhenda Yu, Zetao Fei, Wenjun Lv, and Xin Gao. Pe-yolo: Pyramid en-
hancement network for dark object detection. In International Conference on Artificial
Neural Networks, pages 163–174. Springer, 2023.

[30] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical
low-light image enhancer. In Proceedings of the 27th ACM international conference
on multimedia, pages 1632–1640, 2019.

[31] Yonghua Zhang, Xiaojie Guo, Jiayi Ma, Wei Liu, and Jiawan Zhang. Beyond bright-
ening low-light images. International Journal of Computer Vision, 129:1013–1037,
2021.

[32] Dewei Zhou, Zongxin Yang, and Yi Yang. Pyramid diffusion models for low-light im-
age enhancement. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pages 1795–1803. ijcai.org, 2023.


