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Abstract

Monocular depth estimation is an ongoing challenge in computer vision. Recent
progress with Transformer models has demonstrated notable advantages over conven-
tional CNNs in this area. However, there’s still a gap in understanding how these models
prioritize different regions in 2D images and how these regions affect depth estimation
performance. To explore the differences between Transformers and CNNs, we employ a
sparse pixel approach to contrastively analyze the distinctions between the two. Our find-
ings suggest that while Transformers excel in handling global context and intricate tex-
tures, they lag behind CNNs in preserving depth gradient continuity. To further enhance
the performance of Transformer models in monocular depth estimation, we propose the
Depth Gradient Refinement (DGR) module that refines depth estimation through high-
order differentiation, feature fusion, and recalibration. Additionally, we leverage optimal
transport theory, treating depth maps as spatial probability distributions, and employ the
optimal transport distance as a loss function to optimize our model. Experimental results
demonstrate that models integrated with the plug-and-play Depth Gradient Refinement
(DGR) module and the proposed loss function enhance performance without increasing
complexity and computational costs on both outdoor KITTI and indoor NYU-Depth-v2
datasets. This research not only offers fresh insights into the distinctions between Trans-
formers and CNNs in depth estimation but also paves the way for novel depth estimation
methodologies.

1 Introduction

Monocular depth estimation aims to perceive the depth of each pixel in a 2D image, playing
a pivotal role in understanding the three-dimensional spatial construction of scenes. Histor-
ically, depth maps were acquired using high-end sensors, but their expensive cost and scene
limitations hindered widespread adoption. Consequently, extracting depth information from
2D images using monocular cameras has become a research hotspot.
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With the advancement of convolutional networks, backpropagation learning of features
has replaced early handcrafted features. Eigen et al. [8] pioneered the use of neural net-
works for depth feature learning, setting the stage for the rapid development of monocular
depth estimation. Hu et al. [13] built upon CNNs and employed L1 loss, gradient loss, and
normal loss to address depth map boundary distortions. Bhat et al. [4] utilized Efficient-
Net [25] as the encoder and introduced Transformer modules during decoding to enhance
global feature correlations, achieving state-of-the-art results. With the success of ViT [7]
in image classification, recent works have explored replacing CNNs with Transformers for
feature extraction. Yang et al. [29] combined CNNs with Transformers, merging local infor-
mation from CNNs and global insights from Transformers, offering a novel perspective on
global-local information aggregation. Yuan et al. [31] adopted the Swin-Transformer [16] as
the encoder and leveraged the Transformer’s self-attention mechanism with CRF to integrate
global information.

RGB Transformer CNN

Figure 1: Visualization compari-
son of depth estimation using Trans-
formers and CNNs. From left to
right: RGB, depth prediction using
a Transformer encoder, and depth
prediction using CNN. Both results
are obtained under identical data pro-
cessing and loss conditions. Depth
maps estimated by the Transformer
method exhibit clearer scene struc-
tures than those by the CNN method,
while CNNs provide smoother depth
estimations at object boundaries.

While Transformers have significantly advanced
monocular depth estimation, surpassing CNN mod-
els, the underlying reasons for their effectiveness are
not fully understood. Investigating this will deepen
our grasp of how Transformers process depth, ad-
vancing the field. Humans use visual cues like size-
distance relationships and occlusions to gauge depth
in images[15, 19, 26]. Similarly, this study explores
what cues Transformers leverage and how these can
be optimized to enhance performance. We utilize vi-
sualization techniques to probe whether Transform-
ers and CNNs prioritize the same image regions and
how these preferences affect outcomes, applying the
visualization method developed by Hu et al. [14].

Our experiments demonstrate that Transform-
ers are particularly sensitive to gradient information
in images, especially gradients beneficial for scene
depth information. However, Transformers lag be-
hind CNNs in handling the continuity of depth gra-
dients. Given these observations, we introduce the
Depth Gradient Refinement (DGR) module, a plug-
and-play component designed to enhance Trans-
former performance in depth estimation tasks. We also propose a novel loss function derived
from optimal transport theory. Our findings show that these innovations markedly boost the
performance of Transformer-based models, setting new benchmarks in the field. The main
contributions of this work are:

• We provide a comprehensive comparison between Transformer and CNN models in
monocular depth estimation through visualization, offering an interpretable analysis
of their focal regions and operational principles.

• To address the challenges of depth gradient continuity in Transformers, we intro-
duce the novel Depth Gradient Refinement (DGR) module. This paper also presents
a unique perspective by treating depth maps as spatial probability distributions and
employs optimal transport distance as a loss function for model optimization.
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• Our proposed method, designed as a plug-and-play component, seamlessly integrates
with existing Transformer-based monocular depth estimation models. When com-
bined with leading Transformer-based models, our approach achieves breakthrough
performance, surpassing existing benchmark.

2 Related Work
2.1 CNNs and Transformers for Monocular Depth Estimation
As neural networks have evolved, CNNs have become the backbone for depth estimation, ob-
ject detection, and semantic segmentation due to their translational invariance [27] and robust
feature representation. However, their limited receptive field has historically impeded long-
range dependency modeling, a gap addressed by the introduction of Transformers. These net-
works utilize a sequence-based approach, granting them a global receptive field and making
them increasingly dominant in image processing, often surpassing CNNs. Innovations such
as the lightweight hybrid model by Zhang et al. [32], which integrates Consecutive Dilated
Convolutions and Local-Global Features Interaction, and the convolution-free SwinDepth
by Shim and Kim [23], along with Rahman et al.’s DwinFormer [17], reflect continuous
advancements. Despite their advantages, Transformer-based models still often fall short of
CNNs in fine-grained detail filtering [11].

2.2 Visualization in Deep Learning Models

Recent efforts have focused on understanding the mechanisms behind CNNs in image clas-
sification. Selvaraju et al. [20] used gradient-based techniques to analyze how changes
in input affect model outputs. Techniques like Class Activation Mapping (CAM) and its
enhanced version, Grad-CAM, have been instrumental, the latter integrating gradients to ad-
dress CAM’s limitations. However, studies on the interpretability of Transformers in the
visual domain are sparse. Abnar et al. [1] explored linear relationships within attention
mechanisms, constructing saliency maps via self-attention, though their approach does not
adequately capture the impact on decision-making across different categories. Chefer et al.
[5] applied deep Taylor decomposition to trace local correlations through layers, including
attention and residuals.

Importantly, most of these methods cater to image classification and are not directly
applicable to depth estimation, where the output is a 2D depth map rather than class proba-
bilities. This discrepancy implies significant differences in how features are emphasized in
depth estimation compared to classification. While Hu et al. [14] shed light on CNNs’ se-
lection of depth cues in images, the workings of Transformers in this context remain largely
unexplored. Given that Transformers often excel over CNNs with the same data conditions,
understanding these advantages is critical for advancing the field.

3 Methodology

We adopt the visualization approach proposed by Hu et al [14]. for the interpretability exper-
iments in monocular depth estimation. The underlying assumption is that the Transformer
network can extract depth information from a selected set of pixels. If a subset of pixels in
an image can approximate the entire image with results within an acceptable range, we can
identify the regions of interest for the network. By analyzing the commonalities among these
regions, we can deduce the cues the Transformer network uses for depth prediction. Build-
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Figure 2: Network architecture for visualizing Depth Estimation differences between CNN and Transformer. This figure 

illustrates a dual-pathway architecture for depth estimation from RGB input. It includes two parallel branches with 

model-mask networks (GC and GT) generating predictive masks from the input image. The masks are then element-wise 

multiplied with the RGB input to isolate features of interest. The resulting representations are fed into pre-trained and 

weight-fixed depth prediction networks (“CNN-depth” and “Transformer-depth”), which independently predict depth 

maps (Predict-depth(C) and Predict-depth(T)). The model-masks networks are trained to mask out regions that are not of 

interest to the depth prediction models, enhancing the alignment of the predicted depth maps with the GTs.

CNN-depth

Transformer-depth

Pre-trained & Weights fixed

Predict-depth(C)

Predict-depth(T)

Predict-mask

Predict-mask

Model-mask(GC)

Model-mask(GT)

Figure 2: Network architecture visualizes Depth Estimation differences between CNN and
Transformer models. This dual-pathway architecture processes RGB input through two par-
allel branches, each with a model-mask network (GC and GT ) that produces predictive masks.
These masks are multiplied element-wise with the RGB input to highlight relevant features.
The modified inputs are then processed by pre-trained, weight-fixed depth prediction net-
works (“CNN-depth” and “Transformer-depth”), which independently generate depth maps
(Predict-depth(C) and Predict-depth(T)). The model-mask networks are specifically trained
to exclude irrelevant regions, ensuring that the predicted depth maps align more closely with
the ground truths (GTs).

ing on this, we introduce the Depth Gradient Refinement (DGR) module and the Optimal
Transport Depth Loss (OTDL).

Figure 3: Visualization of differences. From left to right: RGB, image gradient, masks
predicted by Transformer and CNN, and depth predictions post-sparsification.

3.1 Visualization of Monocular Depth Estimation

The experimental network’s architecture is depicted in Figure 2, utilizing two networks, Nt
(Transformer) and Nc (CNN), to predict depth maps Yt and Yc from an input image I. During
the training phase of both networks, we employ consistent data processing techniques and
utilize the same loss function. We use a sparse pixel mask M to determine focal areas by
partially occluding I. The depth predictions ŷt and ŷc from these occluded inputs suggest
important regions for each model.

ŷt = Nt(I ∗Mt) (1)
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ŷc = Nc(I ∗Mc) (2)

Here, Mt and Mc are the sparse pixel selections for each network. The masks undergo
optimization to minimize the loss Ldi f between the full and sparse image depth predictions,
incorporating L1 regularization to promote mask sparsity:

min
M

Ldi f (Y,Ŷ )+λ
1
n
||M||1 (3)

where Ldi f computes the loss between the depth predictions obtained from the full im-
age and those from the sparse image. n denotes the total number of sparse pixels, ||M||1
represents the L1 regularization of M, and λ is a hyperparameter used to control the sparsity
level.

We employ two additional networks, Gt and Gc, to predict two sets of sparse pixels,
maskt and maskc, respectively. More specifically, we consider the following optimization:

min
G

Ldi f (Y,N(I ∗G(I)))+λ
1
n
||G(I)||1 (4)

For network G, we limit its output range to between 0 and 1 by using a sigmoid activation
function. Consequently, I ∗G(I) symbolizes a weighted selection of the input image I. This
method allows the network to assign lower weights to less critical regions while emphasizing
areas considered important.

To evaluate focus areas of CNN and Transformer models, we input I ∗maskc and I ∗
maskt—regions selected by CNN and Transformer, respectively—into the opposite mod-
els. We calculate the Root Mean Square Error (RMSE) for Yt = Nt(I ∗maskc) and Yc =
Nc(I ∗maskt). Stable RMSE values indicate similar focal regions, while notable discrepan-
cies suggest differing areas of interest. Both networks utilize binarized masks, maskc and
maskt , with elements set to 0 or 1, resulting in a sparsified image. Through experimental
comparisons, we investigate these regions to discern the similarities and differences between
the models.

Extensive testing on the NYU-depth-V2 dataset [24] clarifies how the Transformer dif-
fers from the CNN in feature extraction. As shown in Figure 3, the Transformer focuses
notably on object boundaries and peripheral regions, which are crucial for depth perception
in scenes. However, it struggles with the continuity of depth gradients compared to the CNN,
often resulting in unnatural transitions in smoother regions of depth maps. Further details
and analyses are available in the Appendix.

3.2 Depth Gradient Refinement Module
Transformer models excel in global context within monocular depth estimation but struggle
with significant gradient changes at object edges, leading to less distinct boundary depth
estimations. To address this, we introduce the Depth Gradient Refinement (DGR) module,
enhancing depth continuity in transformers. We consider using higher-order derivatives to
better capture the depth map’s intricate variations, particularly where object boundaries show
rapid intensity transitions. We compute the second and third-order derivatives of the depth
map D as:

∇
2D = D∗L (5)

∇
3D = D∗H (6)
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Figure 4: Schematic of the Depth Gradient Refinement (DGR) module. Features processed
by the transformer encoder serve as inputs to the DGR module, subsequently undergoing
higher-order derivative computation, feature concatenation, and feature recalibration.
where L denotes the Laplacian operator, and H represents the corresponding third-order
differential operator. The symbol “∗" signifies the convolution operation.

Subsequently, leveraging feature concatenation, we amalgamate these higher-order deriva-
tive features with the original depth features, yielding a feature representation enriched with
multifaceted depth information:

Fmerged = Concat(FD,∇
2D,∇3D) (7)

Feature recalibration submodule is used to optimize the merged features for depth esti-
mation tasks. We apply channel attention mechanism to weight features based on channel
significance, enhancing spatial adaptivity to improve feature continuity. Furthermore, we
include an outer product and dimensionality reduction to capture higher-order feature in-
teractions. This approach ensures that information from both higher-order derivatives and
original features is effectively utilized and amplified, providing a richer context for monoc-
ular depth estimation:

wc = σ
(
FC2

(
ReLU

(
FC1

(
GAP(Fmerged)

))))
(8)

Fspatial = Conv
(
ReLU

(
Fmerged ⊙wc

))
(9)

Finteraction = Conv1x1
(
Fspatial ⊗Fmerged

)
(10)

The DGR module is strategically placed after each encoder block in the Transformer.
This arrangement supports progressive refinement of depth features while addressing poten-
tial feature discontinuities introduced by self-attention mechanisms and feed-forward net-
works within each block. By positioning the DGR module post each encoder block, we
ensure maintained continuity across the network.

3.3 Optimal Transport Depth Loss
Transformers, devoid of local convolution operations, can occasionally produce depth maps
with unnatural depth jumps in regions expected to be smooth. This observation propels the
need for a more nuanced loss function that can address this continuity challenge. To bridge
this gap, we introduce the Optimal Transport Depth Loss (OTDL). Drawing inspiration from
the optimal transport theory, this loss offers a meticulous comparison between predicted and
true depth maps, emphasizing the preservation of depth distribution variance and continuity.
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To begin with, depth maps must be represented as normalized distributions. Given a
predicted depth map P and its corresponding ground truth depth map Q, normalization is
carried out as:

P′ =
P

∑i, j P(i, j)
(11)

Q′ =
Q

∑i, j Q(i, j)
(12)

where P′ and Q′ are interpreted as probability distributions.
Central to optimal transport is the cost matrix, which details the “expense" of transporting

“mass" between positions. In the depth map context, the depth values provide this positional
information. Thus, our cost matrix M has entries:

Mi j = |i− j|2 (13)

with i and j being depth values. The matrix entry Mi j denotes the cost of transitioning from
depth i to depth j.

The core of our proposed loss rests on solving the optimal transport problem:

OT (P′,Q′) = min
T∈Π(P′,Q′)

∑
i, j

Ti jMi j (14)

where T signifies a joint distribution such that the marginals of T align with P′ and Q′. The
ensemble Π(P′,Q′) contains all feasible T distributions that fulfill this criteria.

From the above discussions, the Optimal Transport Depth Loss (OTDL) is articulated as:

LOTDL(P,Q) = OT (P′,Q′) (15)

For monocular depth estimation, the conventional Mean Squared Error (MSE) loss, de-
noted as LMSE , is typically employed:

LMSE(P,Q) =
1
N

N

∑
i=1

(Pi −Qi)
2 (16)

To harness both the global depth estimation capability of MSE and the depth distribution
preservation of OTDL, we combine them to formulate the final Loss:

L(P,Q) = LMSE(P,Q)+λOT DL ·LOTDL(P,Q) (17)

where λOT DL is the hyperparameter that regulates the influence of the respective loss com-
ponents.

4 Experiments
Implementation Details Our proposed method is implemented using the PyTorch frame-
work on an RTX3090 GPU. We train our model for 200 epochs with a patch size of 256×256.
The Adam optimizer is employed with parameters β1 = 0.9, β2 = 0.999, and ε = 1e−6. The
weight decay factors for the encoder and decoder are set to 0.01 and 0, respectively. We adopt
a polynomial decay for learning rate scheduling, starting with an initial rate of 10−4 and a
power of p = 0.9, decaying until the rate reaches 10−5. For the NYU-Depth-V2 dataset, the
input/output resolution during training is set to 416×544.
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Method Venue Abs Rel↓ RMS↓ Log10 ↓ δ1 ↑
DORN [9] CVPR’18 0.115 0.509 0.051 0.828

Yin et al. [30] ICCV’19 0.108 0.416 0.048 0.872
Adabins [4] CVPR’21 0.103 0.364 0.044 0.903
DPT [18] ICCV’21 0.110 0.367 0.045 0.904

TransDepth [29] ICCV’21 0.106 0.365 0.045 0.900
SwinDepth [6] IEEE SENS J’21 0.100 0.354 0.042 0.909

DepthFormer [2] ICIP’22 0.100 0.345 - 0.911
NeWCRFs [31] CVPR’22 0.095 0.334 0.041 0.922
PixelFormer [3] WACV’23 0.090 0.322 0.039 0.929
NDDepth [21] ICCV’23 0.087 0.311 0.038 0.936

IEBins [22] Arxiv’23 0.087 0.314 0.038 0.936
Adabins + DGR Ours 0.097 0.347 0.041 0.918

DPT + DGR Ours 0.104 0.348 0.042 0.914
TransDepth + DGR Ours 0.101 0.348 0.043 0.911
SwinDepth + DGR Ours 0.094 0.336 0.040 0.920

DepthFormer + DGR Ours 0.096 0.329 - 0.922
PixelFormer + DGR Ours 0.086 0.310 0.036 0.937

Table 1: Experimental results on NYU-Depth-V2. Bold text indicates the best performance.

Datasets We conduct training and visualization evaluations of Transformer and CNN on
the NYU-Depth-V2 dataset [24] and assess the performance of our proposed method on this
dataset. Then, we further evaluated the proposed method on the KITTI [10] dataset.

Models To delve into the differences, we select the ResNet50 [12] and SegFormer [28]
network models as our target models. For a fair comparison, both models are implemented
under identical data processing, training loss functions, and iteration cycles. For the loss
function of the target networks, we employ the loss function proposed in [13] for training.

Ldi f = Ldepth +Lgrad +Lnormal (18)

Loss =
1
n ∑

i
d2

i −
1

2n2 ∑
i

d2
i (19)

where Ldepth =
1
n ∑

n
i=1 F(ei), Lnormal =

1
n ∑

n
i=1(1−cos∂i), Lgrad =

1
n ∑

n
i=1(F(∇x(ei))+F(∇y(ei))),

F(ei) = ln(ei +0.5)).
To assess the efficacy of DGR, we embed it into the state-of-the-art Transformer-based

monocular depth estimation models for evaluation.

4.1 Quantitative results
We analyze the performance of DGR module across various Transformer-based state-of-
the-art methods for monocular depth estimation and compare these results with prominent
CNN-based SOTA models. Our experiments are conducted on two benchmark datasets:
NYU-Depth-V2 and KITTI.

NYU-Depth-V2 Results Table 1 presents the comparative results on NYU-Depth-V2 dataset.
Our proposed Adabins + DGR shows a significant improvement over the baseline Adabins
model, reducing the Absolute Relative Difference (Abs Rel) from 0.103 to 0.097 and RMSE
from 0.364 to 0.347. This improvement demonstrates the

Loss function Abs Rel↓ RMS↓ Log10 ↓ δ1 ↑LMSE(P,Q) LOTDL
✓ 0.088 0.320 0.038 0.931

✓ 0.088 0.319 0.037 0.934
✓ ✓ 0.086 0.310 0.036 0.937

Table 2: Performance of models
trained with different loss functions
on NYU-Depth-V2.

efficacy of the DGR module in refining depth pre-
dictions. Notably, PixelFormer integrated with DGR
(PixelFormer+DGR) outperforms all other methods,
achieving the best performance across most metrics,
specifically lowering Abs Rel to 0.086 and RMSE
to 0.310. This result underscores the compatibility
of our DGR module with different transformer-based

Citation
Citation
{Fu, Gong, Wang, Batmanghelich, and Tao} 2018

Citation
Citation
{Yin, Liu, Shen, and Yan} 2019

Citation
Citation
{Bhat, Alhashim, and Wonka} 2021

Citation
Citation
{Ranftl, Bochkovskiy, and Koltun} 2021

Citation
Citation
{Yang, Tang, Ding, Sebe, and Ricci} 2021

Citation
Citation
{Cheng, Zhang, and Tang} 2021

Citation
Citation
{Agarwal and Arora} 2022

Citation
Citation
{Yuan, Gu, Dai, Zhu, and Tan} 2022

Citation
Citation
{Agarwal and Arora} 2023

Citation
Citation
{Shao, Pei, Chen, Wu, and Li} 2023{}

Citation
Citation
{Shao, Pei, Wu, Liu, Chen, and Li} 2023{}

Citation
Citation
{Silberman, Hoiem, Kohli, and Fergus} 2012

Citation
Citation
{Geiger, Lenz, Stiller, and Urtasun} 2013

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021

Citation
Citation
{Hu, Ozay, Zhang, and Okatani} 2019{}



YAO ET AL.: IMPROVING DEPTH GRADIENT CONTINUITY IN TRANSFORMERS 9

architectures, enhancing their depth estimation capa-
bilities.
KITTI Results As shown in Table 3, on KITTI dataset, the Depthformer + DGR and
PixelFormer + DGR again demonstrate superior performance, with Depthformer + DGR
achieving the lowest Abs Rel of 0.050 and PixelFormer + DGR obtaining the best RMSE
of 2.041. These results are particularly noteworthy given the challenging nature of KITTI
dataset, known for its diverse and dynamic outdoor scenes. The consistent improvements
across different base models when integrated with DGR highlight the module’s adaptability
and effectiveness in various contexts.

(a) 
(b) 

Input

GT

Depthformer

PixelFormer

Depthformer+DGR

PixelFormer+DGR

Figure 5: Comparative Visualization of Depth Estimation on KITTI Dataset with DGR En-
hancement. (b) is a close-up view of the red frame in (a).

Loss Function We further evaluated the performance of the PixelFormer + DGR model
trained with different loss functions, as shown in Table 2. When trained solely with the
LMSE(P,Q) loss function, the model achieved commendable performance on Abs Rel, RMS,
and Log10, with a δ1 accuracy of 0.931. This suggests that the mean squared error loss al-
ready provides a stable optimization target for the model, enabling accurate depth prediction
in most cases. When trained solely with the LOTDL loss function, the model’s performance
is similar to that trained only with the mean squared error loss, hinting at a potential com-
plementary relationship between the two. When combining both loss functions, the model
achieved the best results on all evaluation metrics.

4.2 Qualitative results
Figure 6 shows the visual comparison on NYU-Depth-V2 dataset. Examining the edge def-
inition, the integration with the DGR module appears to enhance the edge smoothness, par-
ticularly around object boundaries. In addition, the detail preservation in areas of intricate
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Method Venue Abs Rel↓ RMS↓ Log10 ↓ δ1 ↑
DORN [9] CVPR’18 0.072 2.727 0.120 0.932

Yin et al. [30] ICCV’19 0.072 3.258 0.117 0.938
Adabins [4] CVPR’21 0.058 2.360 0.088 0.964
DPT [18] ICCV’21 0.062 2.573 0.092 0.959

TransDepth [29] ICCV’21 0.064 2.755 0.098 0.956
SwinDepth [6] IEEE SENS J’21 0.106 4.510 0.182 0.890

DepthFormer [2] ICIP’22 0.052 2.143 0.079 0.975
NeWCRFs [31] CVPR’22 0.052 2.129 0.079 0.974
PixelFormer [3] WACV’23 0.051 2.081 0.077 0.976
NDDepth [21] ICCV’23 0.050 2.025 0.075 0.978

IEBins [22] Arxiv’23 0.051 2.370 0.076 0.974
Adabins + DGR Ours 0.055 2.357 0.083 0.967

DPT + DGR Ours 0.060 2.568 0.088 0.963
TransDepth + DGR Ours 0.061 2.748 0.094 0.962
SwinDepth + DGR Ours 0.098 4.485 0.151 0.894

DepthFormer + DGR Ours 0.050 2.124 0.074 0.979
PixelFormer + DGR Ours 0.049 2.041 0.075 0.979

Table 3: Experimental results on KITTI. Bold text indicates the best performance.

Input GTDepthformer PixelFormer NDDepth Depthformer+DGR PixelFormer+DGR

Figure 6: Qualitative comparison of different models on indoor dataset NYU-Depth-V2.

geometry, like the patterned chair backs and room corners, is visibly better in the DGR-
enhanced models.

Figure 5 demonstrates the visualization results on the KITTI [10] dataset. The incorpora-
tion of the DGR module leads to more precise object boundaries and a clearer representation
of the depth differences between objects at varying distances. This improvement allows for
more accurate estimation of contours for distant objects like trees and people, as well as
cars. In Figure 5(a), a red box highlights two signposts next to a white car, with one being
farther away than the other. Figure 5(b) reveals that after adding the DGR module, the depth
information of these two signposts is predicted more accurately.

5 Conclusion

In this study, we explored the application and challenges of the Transformer architecture in
monocular depth estimation. Through visual comparisons with CNN models, we noted the
Transformer’s superior depth cue selection and identified issues like unnatural depth transi-
tions in smooth regions. To improve Transformer performance, we introduced two novel ap-
proaches: the Depth Gradient Refinement (DGR) module and the Optimal Transport Depth
Loss (OTDL). The DGR module uses higher-order derivatives to better capture variations at
object edges, enhancing depth map continuity and edge sensitivity. The OTDL refines the
loss function, focusing on preserving depth variance and continuity. Together with advanced
Transformer-based models, our methods not only set new performance benchmarks but also
provided deeper insights into the Transformer’s mechanisms, laying a solid foundation for
future research and applications in this field.
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